

國家地震工程研究中心

NATIONAL CENTER FOR RESEARCH ON EARTHQUAKE ENGINEERING

近地表剪力波速性質之研究

郭俊翔 溫國樑 謝宏灝 林哲民 張道明

報告編號:NCREE-11-022

中華民國 100 年 11 月

近地表剪力波速性質之研究

Characteristics of Near-Surface S-wave Velocity

*郭俊翔 **温國樑 ***谢宏灏 *林哲民

****張道明

Chun-Hsiang Kuo Kuo-Liang Wen Hung-Hao Hsieh Che-Min Lin

Tao-Ming Chang

- * 國家地震工程研究中心專案副研究員
- ** 國立中央大學地球物理研究所教授、國家地震工程研究中心兼任組長
- *** 國家地震工程研究中心助理研究員
- **** 國家地震工程研究中心副研究員

中華民國一百年十一月 November 2011

摘要

近地表剪力波速特性是地震發生時某場址對震波放大效應的重要影響 因素,例如 Vs30 (地表下 30 公尺內之平均剪力波速),即是一個普遍為工 程界所採用的簡化參數,常用來判別不同程度的場址放大效應。本研究利 用國家地震工程研究中心(NCREE)與中央氣象局(CWB)自西元 2000 年開始合作建立的「強震測站工程地質資料庫」(EGDT)的資料進行研究。 本資料庫目前已包括 469 個已調查自由場強震測站之資料,可供作分析全 台主要都會區與人口聚集區之近地表波速性質,成果將可供地震危害度分 析與災損評估之用,此資料庫所包含之測站、試驗種類與結果資料等內容 皆在本報告中詳細介紹,此強震測站工程地質資料庫之資料免費提供相關 領域的工程與研究人員上網申請 (網址: http://egdt.ncree.org.tw/)。本研究 內容另包括建立全台灣與各區域之剪力波速與 N 值及深度相關之經驗式; 由於資料庫中有 54 個測站之波速測量剖面未達 30 公尺,無法直接計算 Vs30,故以其他深度達 30 公尺以上之波速剖面資料進行測試,發現最適合 台灣的地質條件下使用的 Vs30 外插法乃是最簡單的底部速度定值法 (BCV),然後將此法應用於這54個測站以推估Vs30之數值;並依據美國 國家地震減災計畫(NEHRP)公布的 Vs30 地盤分類準則(BSSC, 2001), 對所有已鑽探之自由場強震站進行場址分類,進一步與前人之相關研究成 果比較並進行討論,以說明本研究利用豐富之鑽探資料與適當之外插法所 得的 Vs30 數值與自由場強震站地盤分類結果之準確性確實較佳。

關鍵詞:強震測站工程地質資料庫、自由場強震站、剪力波速、場址分類

I

ABSTRACT

Near surface S-wave velocity is a major factor in seismic wave amplification. The so-called Vs30, for example, is a critical simplified parameter in engineering to illustrate different seismic site effects. This study utilized the Engineering Geological Database for TSMIP (EGDT), which has been undertaken by the National Center for Research on Earthquake Engineering (NCREE) and the Central Weather Bureau (CWB) in Taiwan since 2000. EGDT contains 469 surveyed TSMIP stations and is free for researchers and engineerings to apply for the drilling data on the website: http://egdt.ncree.org.tw/. The results of the drilling project could be provided to seismic hazard analysis and loss assessment. We therefore used the database to evaluate the empirical S-wave velocity (Vs) equations for different regions and for whole Taiwan by correlating Vs with N-value and depth. In addition, for those stations with Vs profiles of depthes less than 30 m, we can not calculate Vs30 at those sites. We studied the velocity profiles reached at least 30 m to found the suitable extrapolation of Vs30 for Taiwan. BCV is verified the most simple and accurate method as a result of the geological condition of Taiwan, and then the Vs30 of the 54 stations with velocity profiles less than 30 m were estimated. Moreover, the site categories of drilled free-field TSMIP stations include the 54 profiles which are less than 30 m were classified according to the Vs30 criterion of NEHRP (BSSC, 2001). The Vs30 values and site classification were compared with results of other researches to identify that our study has the best result.

Keywords: EGDT, Vs30, TSMIP, S-wave velocity, site classification

目錄

摘要	I
Abstract	II
目錄	III
第一章 緒論	1
1.1 研究動機與目的	1
1.2 台灣地體構造與地質概況簡介	1
1.3 相關文獻回顧	3
1.4 研究內容	4
第二章 強震測站工程地質資料庫簡介	6
2.1 台灣強震觀測計畫簡介	6
2.2 自由場強震站鑽探計畫簡介	7
2.2.1 計畫緣起	7
2.2.2 測站場址特性調查內容	8
2.2.3 工程地質資料庫之基本資料	10
第三章 剪力波速經驗式與 Vs30 外插法	23
3.1 剪力波速經驗式之建立	23
3.2 Vs30 外插法之比較與評估	26
3.3 綜合應用與討論	28
第四章 自由場強震站之地盤分類	40

	4.1 場址分類結果與 Vs30	.40
	4.2 相關成果之比較與討論	.41
설카	帛五章 結論與展望	. 50
	登考文獻	. 53
降	付錄一 本研究所使用之統計外插法係數	. 58
降	付錄二 EGDT 中已鑽探測站座標及場址相關資訊	. 66

第一章 緒論

1.1 研究動機及目的

從1999年921集集地震發生後,台灣強地動觀測計畫(Taiwan Strong Motion Instrumentation Program, TSMIP)之強震站收集到的集集地震序列資 料對地震學及地震工程方面的研究而言都是相當寶貴的資料,這些強震資 料也引起了許多國內外專家學者的興趣。然而,當時的自由場強震站仍普 遍缺乏可靠的場址地質資料,因此在強震紀錄的使用上,如何考慮場址效 應的影響成為一個難題。有鑑於此,國家地震工程研究中心與交通部中央 氣象局自 2000 年起,共同執行多年期之自由場強震測站鑽探計畫,用以瞭 解現有自由場強震站之淺層地質特性。此鑽探計畫至 2010 年為止共已調查 469 個自由場強震站,所有之鑽探資料也已由國震中心彙整成「強震測站工 程地質資料庫」(Engineering Geological Database for TSMIP),以下簡稱 EGDT (謝宏灝等人, 2011)。

本研究之目的即使用此資料庫豐富且遍布全台之資料建立全台各區域 的剪力波速經驗式,並以井測所得之波速資料探討適合台灣地質背景所用 之 Vs30 外插法,進一步得出更為完整之強震測站場址之 Vs30 數值,同時 也採用 NEHRP 所建議的根據 Vs30 之地盤分類標準,將已鑽探之自由場強 震站進行分類。由於台灣最新修訂之「建築物耐震設計規範及解說部分規 定修正規定」(2011),已於 2011 年 7 月 1 日開始實施,其中所採用之剪力 波速經驗公式係參考日本「道路橋示方書同解說,V耐震設計編」(1996) 而來,本研究所提出之剪力波速經驗式恰可做為日後再次修正之參考;而 所計算之 Vs30 數值及場址分類結果則可供強地動衰減式的相關研究作為場 址修正參數使用;另外,本研究的剪力波速經驗式和 Vs30 外插法對於未來 若要進一步利用其他資料庫既有的地質及波速剖面進行某場址 Vs30 數值的 評估則可提供一快速可靠的工具。

1.2 台灣地體構造與地質概況簡介

台灣島介於歐亞大陸板塊與菲律賓海板塊碰撞交界處,地處於環太平

洋地震帶上。其東北部處於琉球弧溝系統西南端,有蘭陽平原為此弧溝系統刺入張裂所形成之一說(Teng, 1996)。菲律賓海板塊於此處沿琉球海溝向北隱沒至歐亞大陸板塊之下;於台灣島東南部則是歐亞大陸板塊沿馬尼拉海溝向東隱沒至菲律賓海板塊之下,形成呂宋弧溝系統。由 GPS 在台灣島東南部海岸所測得之板塊相對運動速率可達每年 8 公分以上,也由於板塊間的聚合、碰撞、擠壓與變形等作用造成地震活動極度頻繁而地質條件極度多變複雜。板塊間的碰撞也造就了台灣島上高達 4 公里的山脈,東部海階則以每年 0.5 至 0.7 公分的速率持續抬升中(Liew et al., 1993)。另外,由於地形和氣候的影響,台灣島上的侵蝕速率更是全世界首屈一指(Koppes and Montgomery, 2009)。以上種種原因就是造成在這個面積僅三萬六千平方公里的島上,而其地質、地形和地震活動特性竟會如此複雜多變的原因。

台灣具有地槽和島弧雙重地質背景,是以先第三紀變質雜岩系為基盤 的第三紀地槽沈積。由於板塊運動方向的關係,台灣島的主要構造線,包 括地層走向、斷層線和褶皺等,都和本島的基本弧形構造相一致。台灣大 致可分為三個主要地質區 (何春蓀,1997):1.中央山脈地質區、2.西部麓 山地質區、3.海岸山脈地質區。中央山脈是構成台灣島的主要山嶺,它包括 所有亞變質的第三紀地層和先第三紀的變雜岩系,此地區又可分為兩個地 質亞區,即東地質亞區和西地質亞區,西地質亞區主要由第三紀的亞變質 岩層所組成,分布在中央山脈西翼、脊樑山脈和南部;東地質亞區由先第 三紀的變質雜岩系組成,主要位於中央山脈的東翼。西部麓山帶地質區主 要由新第三紀碎屑岩層組成,包含一小部分漸新世地層,主要的岩石是砂 岩和頁岩的互層,局部夾有石灰岩和凝灰岩的薄層或是凸鏡體,在地質上 本區也包括西部濱海平原和澎湖群島兩個地質區。海岸山脈地質區位於台 灣東部,主要由新第三紀地層所組成,但沈積物的地質環境與岩性和西部 麓山區則大不相同,本區內以火山岩、含火山物質的沈積岩、濁流作用造 成的碎屑沈積岩和混雜無層理的混同層為其代表,與中央山脈之間則以台 東縱谷為分界,這是一個構造上的重要單位,則獨立另列為東部縱谷地質 亞區。

1.3 相關文獻回顧

許多研究都指出剪力波速與某些土壤參數有關,如N值、深度、土壤 種類及地質年代等。某些早期的鑽探剖面可能僅有N值但並無進行波速測 量,若能求出剪力波速與土壤參數之間的關係,則可將N值剖面轉換成剪 力波速剖面。Ohta and Goto (1978a, 1978b)在現地進行標準貫入試驗的同 時也測量剪力波速,然後求出剪力波速與各種土壤參數的經驗關係式,這 也是首先採用多變數回歸技術的相關研究。而Hamilton (1976)和 Holzer et el. (2005)則是得到與深度相關的波速經驗式。除了僅與深度相關的波速 經驗式之外,也有僅與N值相關的波速經驗式 (Ohsaki and Iwasaki, 1973; Imai, 1977; Seed and Idriss, 1981; Pitilakis et al., 1999; Hasancebi and Ulusay, 2007; Sykora and Stokoe, 1983; Lee and Tsai, 2008)。然而,另外也有些研究 成果同時使用N值和深度來推估剪力波速(Ohta and Goto, 1978b; Lee, 1992; Chen et al., 2003; Chapman et al., 2006; Kuo et al., 2011; Akin et al., 2011)。其 中, Chen et al. (2003)、Lee and Tsai (2008)以及 Kuo et al. (2011)所使 用的資料皆來自本中心的 EGDT。

近地表 30 公尺的地層平均剪力波速,即所謂之 Vs30,是一在工程上普 遍被視為能夠反應該地場址特性的參數,NEHRP 在近幾年的建築法規中也 建議採用 Vs30 當作地盤分類的標準,另外,著名的 NGA 計畫也採用 Vs30 當作場址修正的參數。但考慮到許多既有的鑽井,尤其是多年前的工程鑽 探資料,很多並未達到 30 公尺,Boore (2004) 討論到這個全球性的問題, 並且利用加州的鑽探資料驗證了數種常用的外插法,其中,根據 Vs30 與 Vs(d) (d 為小於 30 之數值,代表任意深度的平均波速)的對數值間的線性 關係所推導出的外插法具有最佳結果;Boore and Joyner (1997) 在更早則 認為剪力波的走時與深度之間是呈指數關係;另外則是將既有波速剖面的 最深處之波速假設為一定值直達 30 米 (Boore, 2004; Kuo et al., 2009)。以上 所提到的為最常見的三種 Vs30 外插法,Kuo et al. (2011)使用台北及宜蘭 地區的鑽探資料對這三種外插法進行測試比較,結果是上述第三種 Vs30 外 插法最為準確。

Lee et al. (2001)提出台灣 TSMIP 自由場測站的場址分類,其結果至 今仍為大多數人所熟知及採用。然而近十年來許多相關研究指出此場址分 類的結果有諸多不合理之處,也隨著國震中心和氣象局合作的 TSMIP 鑽探 計畫的資料日漸豐碩,確認此場址分類確實無法真正反應大多數測站的真 實近地表地質狀況。雖然 Phung et al. (2006) 採用反應譜的方式對 333 個 強震站進行分類,但此方式僅能將場址分為土壤及岩盤兩種。Lee and Tsai (2008) 則是採用 EGDT 之鑽探資料(2000 年至 2005 年) 與地質調查所 之 Geo2005 的資料,除了對 TSMIP 自由場強震站重分類之外,也計算各測 站的 Vs30 數值,同時採用地質內插法的技術推算台灣全島的 Vs30 數值分 布狀況。Chiou and Youngs (2008) 同樣使用 EGDT 的鑽探成果資料(2000 年至 2004 年), 挑選其中 165 個測站, 就 Geomatrix 第三字母之場址分類結 果回歸分析 Vs30 與測站高程的關係式,再使用該關係式估算其他測站的 Vs30 數值。Kuo et al. (2011) 則是採用 EGDT 至 2009 年之較新資料,分 析台北及宜蘭地區的近地表剪力波速特性,發現就此區域而言, Lee and Tsai (2008)的分類結果已較 Lee et al. (2001)改善許多,但在 Vs30 的數值估 算方面誤差仍大。故本研究將延續 Kuo et al. (2011) 的方法,統整比較台 灣全島的近地表剪力波速性質與特性。

1.4 研究內容

本研究主要利用國震中心與氣象局合作之多年度自由場強震站鑽探計 畫的成果資料庫,即 EGDT,來分析台灣全區的近地表波速特性,包括各 區域剪力波速經驗式之建立、Vs30數值計算、Vs30外插法之測試以及對已 鑽探之自由場強震站進行場址分類。本研究結果可供建築物耐震設計規範 及強地動衰減律相關研究之使用。以下概述本報告各章節之內容:

第一章為緒論,介紹本研究之動機、目的和各章節內容,並簡介台灣 島之構造與地質背景,也回顧重要之前人相關研究。

第二章為 EGDT 之簡介,包括台灣強震觀測計畫之說明以及 TSMIP 自由場測站鑽探計畫之簡介,包括計畫緣起、資料庫內容以及提供給一般申請者之基本資料種類。

第三章說明本研究如何建立台灣各區域之近地表剪力波速經驗式,以 及如何比較評估各種 Vs30 外插法在台灣之適用性。

第四章為利用 EGDT 中的鑽探波速資料對 439 個自由場強震站進行 Vs30 數值之估算與場址分類,並與其他研究之成果比較,證明本研究結果 較佳的精確性。

第五章為結論與展望,對本研究目前之成果進行重點彙整,並討論後 續研究之方向與可行性。

第二章 強震測站工程地質資料庫簡介

2.1 台灣強震觀測計畫簡介

中央氣象局自民國 80 年(西元 1991 年)開始執行台灣強地動觀測計 畫(TSMIP),以發展地震觀測、速報、預測、防災等科技。第一期計畫先 以建立都會區的強地動觀測網,蒐集各都會區地層、土壤及結構物之強震 資料為目標,該資料可為工程界耐震設計規範之重要參數,並可提供救災 單位搶救方案之參考依據。1998 年開始,第二期計畫為建置地震速報系統, 為強化地震防救災功能,氣象局挑選數十個強地動觀測網之測站將其及時 連線至台北資料處理中心,組成強地動及時觀測網(real-time strong motion monitoring network),成功的大幅縮短了對有感地震發佈測報的時間。2004 年開始的第三期計畫則是發展強震即時警報系統,基於地震速報減災的構 想,預計在現有地震速報作業時間約1分鐘的基礎下,逐年縮減5至10秒, 欲將測報速度縮短至30秒內,在破壞性震波到達之前先對距離震央較遠之 都會區爭取10~20秒之預警時間(地震中心20週年專刊,2009)。

強地動觀測網可分為自由場強地動觀測網及結構物強震監測網兩部分 (圖 2.1),自由場強震網測站場址之選取原則為:在各大都會區以先疏後 密的方式建站;在各活動斷層周邊建站;在岩盤、軟弱土層及堅硬土層等 不同地質環境建站;在重大工程或公共建設如核電廠和工業區設站。自由 場測站之強震儀為加速度型,可直接反應出地震時當地的震度。目前自由 場強震網所設置之加速度地震儀由最早期的A800強震儀(12位元),逐漸 提升其解析度至16位元,包括A900、A900A、IDS3602、IDS3602A,及 18位元之ETNA、K2,近期又逐漸提升為24位元,如CV574C、CV575C、 SMART24A等。取樣率為每秒200點或250點,最高具有19位元之解析度, 感應器可記錄正負2G之加速度訊號。除即時網之外的強震儀皆以觸發模式 來記錄地震訊號,大多數測站皆以最大振幅之千分之二(約 3.92 gal)為觸 發標準,經震波觸發後,回推時間之撷取長度為20秒,最長記錄時間為90 秒。大部分之強震站皆已安裝 GPS系統用以校驗時間,而目前氣象局人員 固定每3個月至現地蒐集一次強震資料。由於台灣都會區高樓林立,交通

網絡上橋樑不絕,結構物之耐震能力設計及評估相當重要,因此強地動觀 測計畫中也設立了結構物強震監測網以觀察結構物於地震時之振動反應。 其測站選址也包含以下原則:結構物所在之地盤特性包含軟弱、中等、堅 實地盤;包括各種自由振動週期之建築物,如低層建築物(週期<0.5秒)、 中層建築物(週期0.5秒~1.5秒)、高層建築物(週期>1.5秒);包括各種 功能之建築物,如學校、醫院等(地球物理資料管理系統網頁)。

2.2 自由場強震站鑽探計畫簡介

自由場強震站鑽探計畫是由國家地震工程研究中心和中央氣象局共同 合作執行之多年度研究計畫,至2010年為止,總調查測站已達469個,其 中完成地質鑽探、土層物理特性試驗與波速調查之測站為439個,換言之, 有30個完成調查的自由場測站卻不包含鑽探和井測,其主要原因有二,一 為測站位置陡峭,鑽探機具無法到達測站周圍,若於附近機具可到達之處 施鑽則可能因距離過遠與地勢高程相差過多,而鑽探結果將無法反應測站 之真實地下土層結構;二為部分測站所在之學校單位基於安全考量或及他 因素婉拒鑽探。此30個無法施鑽之測站仍包含地面調查結果,如測站附近 平面圖之繪製與拍照,及測站站房之外觀檢視等。以下就本鑽探計畫之緣 起及詳細內容加以說明。

2.2.1 計畫緣起

由於板塊邊界的聚合碰撞造成台灣島地震活動極度頻繁而地質條件多 變複雜。島上有高達4公里的山脈,東部海階則以每年0.5至0.7公分的速 率持續抬升中(Liew et al., 1993)。由於地形和氣候的影響,台灣島上的侵 蝕速率更是全球頂尖(Koppes and Montgomery, 2009)。因此在這個面積僅 三萬六千平方公里的島上,其地質、地形和地震活動特性竟是如此複雜而 多變。集集地震發生後,台灣強地動觀測計畫所設置的強震站記錄到的集 集地震序列對地震學及地震工程方面的研究而言都是相當寶貴的資料,這 些強震資料也引起了許多國內外專家學者的興趣。然而,當時的自由場強 震站仍普遍缺乏可靠的場址地質資料,因此在強震紀錄的使用上,如何考

慮場址效應的影響成為一個難題。有鑑於此,國家地震工程研究中心與交通部中央氣象局自 2000 年起,共同執行多年期之自由場強震測站鑽探計畫,用以瞭解現有自由場強震站之淺層地質特性,以作為測站場址效應之參考。

鑽探計畫的第一年(2000年),調查之測站鎖定為 RTD 速報站,其為 與 TSMIP 自由場測站共站之測站。而從 2001 年九月開始,國震中心與南 加大(USC)的 ROSRINE (Resolution of Site Response Issue in the Northridge Earthquake)工作團隊簽訂一技術移轉之合作計畫。ROSRINE 原為美國一 個有名的測站地質調查計畫,國震中心與其簽訂技轉協議,美方由 Robert L. Nigbor 教授擔任計畫主持人, John Diehl 為共同主持人,而國震中心則由溫 國樑組長擔任強震站鑽探計畫之計畫主持人,於 2001 至 2002 年度選定宜 蘭及雲嘉南地區共 33 個自由場強震測站,包括 4 個預定鑽孔較深的測站(鑽 探深度約 50-100m) 作為年度調查測站。測站調查內容與作業流程則依據 ROSRINE 計畫之作法及經驗,由 ROSRINE 團隊協助國震中心工作團隊完 成測站地質調查工作與技術移轉。

2.2.2 测站場址特性調查內容

至 2010 年為止,國震中心與中央氣象局已在 469 個自由場強震站完成 調查,測站分布如圖 2.2,其中有 439 個測站包含完整的地表調查與地質鑽 探分析結果。各年度之鑽探調查成果進度如下:2000 年 60 站、2001 年 65 站、2002 年 50 站 (2)、2003 年 54 站、2004 年 40 站 (1)、2005 年 26 站 (6)、2006 年 50 站 (3)、2007 年 49 站 (5)、2008 年 31 站、2009 年 47 站 (7)、2010 年 21 站,括號內之數字代表當年度調查測站有多少個是重新 調查往年未完整調查之測站。此乃因測站鑽探與調查之標準作業流程有略 做修改,故對前幾年未完整調查之重要測站重新鑽探調查,例如施做標準 貫入試驗 (Standard Penetration Test, SPT)時,舊作業流程規定若連續 5 米 N 值皆大於 50,則視為已鑽至岩盤可停止施鑽,但新作業流程則更改為不 論是否鑽至岩盤,鑽探深度皆須達到 35 米以方便使用懸浮式井測儀 (Suspension PS-logger System)測量波速。當中最具代表性之一例為

TCU083 中央大學,初次調查時間為 2000 年 12 月,標準貫入試驗 N 值從 5 米至 10 米皆為 100 以上,故停止施鑽,而當時並無進行波速量測;再次調 查之時間為 2005 年 7 月,此次鑽探深度達 35 米,與前次鑽孔之距離約 3 米,根據岩芯柱狀圖同樣在約 5.8 米深處 N 值即大於 50,但從 14.6 米至 22 米之深度,N 值皆小於 50,顯示此處存在一地質軟弱帶,而從波速測量剖 面中也明顯證實低速層(或淺部之高速層)之存在(圖 2.3)。此 439 個測 站鑽孔中,有 22 個深度大(等)於 50 公尺,其分布如圖 2.4,其中深度最 深的是 TCU138 彰化縣湳雅國小,達 150 公尺。

一般來說,完整的測站場址特性調查包括地表及地質鑽探調查。地表 調查工作包括事前的測站所在之區域地質資料(如地質圖及航照圖)收集、 檢查強震儀站房之基礎結構是否有沈陷、滑動或裂縫,以及 GPS 重新定位、 測站附近平面圖繪製、地表狀況簡述和照片拍攝。地質鑽探工作則包括鑽 孔、標準貫入試驗、土壤物理性質試驗、鑽孔柱狀圖繪製及懸盪式波速井 測。現地試驗及實驗室分析過程皆遵照 ASTM 規範,且進行分析之實驗室 通過台灣認證協會(TAF)之認證,分析之品質及結果之準確度皆相當可靠。

標準貫入試驗在一般土層每 1.5 公尺施做一次,若在卵礫石層則每 3-5 公尺施做一次,標準貫入試驗之取樣器受自動落錘的撞擊鑽入現地土壤 中,其貫穿第一個 15 公分土層所需之敲打數為 N1、貫穿第二個 15 公分土 層所需敲打數為 N2、貫穿第三個 15 公分土層所需之敲打數為 N3,而 SPT-N 值即為 N2 與 N3 之總和,在本作業內容中 N 值以 50 為其上限,故若遇敲 擊次數>50 之堅硬土層,則另外標示其貫入深度,如圖 2.5 所示,例如 26+50/12cm 代表 N1=26 而 N2=50 且其貫入深度僅 12 公分;若 12+30+50/7cm,則代表 N1=12、N2=30 而 N3=50 且其貫入深度僅有 7 公分; 若遇相當軟弱之土層,則 N 值之計算可能會有非整數的情況出現,譬如只 敲擊一下,則已貫入 30 公分深,第二下之敲擊再貫入 15 公分深,則此情 況下 N1+N2=1 且 N3=1,因此 N 值則表示為 1.5 (即 1/2+1),而 N 值之相 對深度位置為第一個 15 公分土層頂部深度。

各深度的土壤樣本將送回實驗室,以進行各種物理特性分析以得到各 種重要土壤參數,包括土壤粒徑、砂、沈泥及黏土含量、均勻係數、級配

係數、顆粒比重、孔隙比、含水量、單位重、彈性限度與塑性指數,並對 各深度土樣依據標準土壤分類系統(USCS)進行土壤分類(強震儀測站地 質鑽探調查工程紀實報告書,2002-2010)。

在地層波速方面,本鑽探計畫採用日本 OYO 公司所設計生產之懸盪式 井測系統 (suspension PS-logger system)進行測量,其構造可分為測桿、傳 輸及連結部分、資料擷取及記錄部分。測桿內含震源驅動器、呆重、震源、 上下兩組接收器和放大器,操作時可由震源產生震波,通過地層向上傳遞, 由兩組接收器分別接收訊號,從而計算該處地層之 P 波和 S 波速,本測量 採上孔式,由井底開始每0.5公尺進行一次波速測量,兩組接收器之中點為 其對應之測量深度,懸盪式井測系統之結構與測量示意圖如圖 2.6 所示,該 井測系統可調整取樣率由 2.5 到 200 微秒(μs), 而單筆資料長度可選擇 1024 或 2048 詞 (words)。此系統測量所的波形如圖 2.7 所繪,一般而言只要判 斷初達波之到時差,即可計算 P 波與 S 波速度。富國技術工程股份有限公 司為本鑽探計畫之委託廠商,該公司參考懸盪式井測之操作手冊及該公司 與本中心操作人員之多年現地實際測量與資料分析經驗,歸納出一套現地 施測之標準化操作流程 (圖 2.8), 可將人為操作或儀器之可能誤差降至最 低,若現地施測資料品質不佳時,可加入濾波軟管重新施測,一般可獲得 較佳之資料品質,兩筆資料並可互相比對驗證。在許多實際的案例中,常 會有某些深度波形資料品質不佳的現象,例如地層材料顆粒較大、膠結度 差(如卵礫石層)、地下水位過低或近地表之雜訊過大等,進而增加初達波 判讀的難度,除了可利用儀器本身自動增益(AGC)的功能,或是後續濾 波的方式來改良資料品質外,也可將同一口井的測量資料依不同深度繪出 深度序列 (圖 2.9), 可藉由初達波到時隨深度的連續變化幫助判斷讀取正 確的初達波。在某些波速資料品質較差的測站,委託廠商也另外使用下孔 式波速井测法 (即震源位於地表,接收器位於井內),兩者得以互相比對, 使結果更為可靠。

2.2.3 工程地質資料庫之基本資料

歷年來之測站調查結果已彙整為「強震測站工程地質資料庫」

(EGDT),可於本中心網頁(<u>http://egdt.ncree.org.tw/</u>)中查詢已鑽探測站之 N值、波速剖面、Vs30數值、場址分類結果等,數值資料仍暫不公開於網 路下載,但可供使用者提出申請,申請書中除申請人之基本資料外須另外 說明欲申請之測站編號、用途與相關研究計畫名稱編號等,審核通過後將 免費提供使用者所申請測站之相關資料。

圖 2.10 即為提供給申請者之資料內容(以 TCU083 中央大學測站為例),鑽探資料以 EXCEL 格式提供,內容包括:地層描述、土層之各種物 理性質、地層柱狀圖、N值、P 波及 S 波速度之數值、測站平面圖及照片等 四部分。

截至目前為止,已有許多國外之單位申請 EGDT 的資料,如:美國地 質調查所(USGS)、南加大(USC)、紐約州立大學、太平洋地震工程研究 中心(PEER)、東京工業大學、德國卡爾斯魯爾大學(KIT)、中國地震局、 及英國雪菲爾大學等;國內也有台灣大學、中央大學、成功大學、淡江大 學、嘉義大學、萬能科大等多所大專院校及其他單位申請使用。許多相關 研究成果,如 SCI 和 EI 期刊論文、碩博論文等也已公開發表,由於論文數 量龐大,在此僅列舉使用本資料庫資料之衍生 SCI 論文如下:Huang et al. (2005, 2007, 2009)、Wang et al. (2006)、Sokolov et al. (2007)、Chiou et al. (2008)、Power et al.(2008)、Wen et al.(2008)、Lee and Tsai(2008)、Pavlenko and Wen (2008)、Kuo et al. (2009, 2011)以及 Lin et al. (2009)。

圖 2.1 台灣 TSMIP 的自由場及結構物強震儀分布圖 (吳健富提供, 2010)。

圖 2.2 已完成調查之 TSMIP 自由場測站分布,藍色圓圈為完成地質鑽探之 測站,紅色圓圈為僅有地表調查之測站,空白圓圈為尚未調查之測 站。灰色英文字母為強震站命名所根據之區域代號。

圖 2.3 中央大學(TCU083)之兩次鑽探結果。上圖為 2000 年第一次鑽探結果,僅有簡單地層剖面及標準貫入N值;下圖為 2005 年第二次鑽 探結果,包含完整地質鑽探結果(P波波速剖面未在此列出)。

圖 2.4 強震站鑽探計畫中,深度大(等)於 50m 之測站。

(a) 狀況 1: N1,N2,N3(=50 1.05m 1.20m 1.35m 1.50m 1.50m 1.50m N1 1.50m	← Depth Position SPT-N=N2+N3	(b) 狀況 1:N1+N2=1, N3=1 1.05m 1.20m 1.35m 1.50	← Depth Position SPT-N=1/2+1 =1.5
<u>狀況 2: N1,N2<-50,N3=50,X</u> 1.05m 1.20m <u>15cm N1</u> 1.35m <u>15cm N2</u> <u>X3 N3</u>	<u>3(15cm</u> ◀─── Depth Position SPT-N=N1+N2+N3/X3	<u>狀況 2: N1+N2+N3=1</u> 1.05m 1.20m <u>15cm N1</u> 1.35m <u>15cm N2</u> 1.50m 15cm N3	← Depth Position SPT-N=(1/3)x2 =2/3
狀況 3: NIK=50,N2=50,X2(北 1.05m 1.20m 15cm N1 X2 N2	5cm ←─── Depth Position S PT -N=N1+N2/X2	狀況 3: N1+N2=1.N3+N4=1 1.05m 15cm N1 1.20m 15cm N2 1.35m 15cm N2 1.50m 15cm N3 1.65m 15cm N4	← Depth Position SPT-N=1/2+1/2 =1
<u>狀況 4: N1=50,X1(15</u> cm 1.05m <u>X1 N1</u>	← Depth Position SPT-N=N1/X1	狀況 4: N1+N2=3,N3=2 1.05m 15cm N1 1.20m 15cm N2 1.35m 15cm N3=2	← Depth Position SPT-N=3/2+2 =3.5

圖 2.5 強震測站工程地質資料庫中所採用的 N 值定義。(a) 代表一般或堅 硬地層的狀況,(b) 代表軟弱地層的狀況。(取自強震儀測站地質鑽 探調查工程紀實報告書,2010)

圖 2.6 懸盪式井測系統結構與測量示意圖。位於地表之資料擷取器透過捲 揚機與測桿部分連線進行測量,由震源(source)產生 P 波與 S 波, 通過地層傳播後由兩個接收器(lower and upper receiver)接收訊號。

圖 2.7 懸盪式井測系統所得之波形。H與V分別為水平向及垂直向訊號接 收器,數字1和2分別代表位於上方及下方之接收器,震源會產生 垂直向之P波以及兩個相互垂直之水平向S波,由接收器所接收。 接收器之距離固定為1公尺,由時間差 t_{p1}-t_{p2}及 t_{s1}-t_{s2}即可計算出該 對應深度之P波與S波速度。

圖 2.8 懸盪式井測系統施測之標準操作流程。(取自強震儀測站地質鑽探調 查工程紀實報告書,2010)

圖 2.9 波形記錄之深度序列(以S波為例)。由震波到時隨深度的變化可大 概判斷出波速的變化,若某深度波形品質不佳也可藉由鄰近深度之 較佳波形協助判斷正確的初達波到時。黑色及紅色分別代表兩個互 相垂直之水平向S波波形。

鑽孔編號	深度(m)	SPT-N	USCS	土壤描述	取樣編號	Gravel%(ASTM)
TCU083	0		SF	棕色,粉土質黏土,夾混凝土塊、少量細砂及垃圾-回填層	S-0	
TCU083	0.6		CL	紅棕色,粉土質黏土;偶夾小礫石及樹根;中度稠密	S-0	
TCU083	1.05	7	CH		S-1	0
TCU083	1.7		CL	紅棕色,粉土質黏土;中度稠密至稠密	S-0	
TCU083	2.55	7	CH		S-2	0
TCU083	4.05	11	CH		S-3	0
TCU083	4.75		GW	灰色或棕灰色;石英質礫石;灰紅棕色粉土質黏土;極密實;礫石淘選度差	S-0	
TCU083	5.45		GW	灰色或棕灰色;石英質礫石;夾紅棕色粉土質黏土,極密實;礫石海選度差	S-0	
TCU083	5.8	50/10	GP-GM		S-4	66
TCU083	6.9	50/13	GM		S-5	52
TCU083	8.55	50/15	GM		S-6	43
TCU083	9.6		GW	灰色或棕灰色,石英質礫石;夾紅棕色粉土質黏土,極密實碟石海選度差	S-0	
TCU083	10.05	50/5	GM		S-7	41
TCU083	11.55	50/4	GP-GM		S-8	69
TCU083	12.05		GW	黄棕色,藥石、灰細砂及粉土、溶蛋	S-0	
TCU083	13.05	55	SM		S-9	0
TCU083	14.55	35	SM		S-10	0
TCU083	16.05	29	SM		S-11	8
TCU083	16.9		SM	黄棕色,粉土質砂,夾灰色粉土及黏土	S-0	
TCU083	17.55	24	SM		S-12	2
TCU083	18.6		CH	黄棕色粉土質黏土、夾少量細砂	S-0	
TCU083	19.05	17	CH		S-13	0
TCU083	20.55	12	CH		S-14	0
TCU083	21.2		SM	黄棕色粉土質砂灰粉土質黏土	S-0	
TCU083	22.05	48	SM		S-15	0
TCU083	22.5		SS	黄棕色至粗粒砂岩夾頁岩:中至高度風化,膠結差,岩質極弱	S-0	
TCU083	23.55	51	SM		S-16	0
TCU083	28.6		SS	黄棕色.細粒砂岩間夾灰色至黄棕色泥岩;中至高度風化.膠結性差至尚可.岩質極弱28.6~28.8M.深褐色鏽染	S-0	
TCU083	30.85		SS	黄棕色、粗至極粗粒砂岩夾礫石;中度至高度風化膠結差至尚可岩質極弱至甚弱31.1~31.3M、褐色鏽染夾多量礫石	S-0	

(a) 地層描述。

Sand%(ASTM)	Silt%(ASTM)	Clay%(ASTM)	<i>D</i> ₁₀ (mm)	D 30 (mm)	D 50 (mm)	D 60 (mm)	温密度(t/m³)	含水量(%)	比重	液限(%)	塑性指数(%)
5	47	48	0.000	0.000	0.006	0.010	1.91	22	2.72	59	33
		50	0.000	0.001	0.005	0.012	1.07	22	2.72	(0)	40
12	25	52	0.000	0.001	0.003	0.012	1.87	27	2.72	60	40
12	35		0.000	0.000	0.005	0.012	1.07	21	2.12	09	40
23	9	2	0.069	2.634	12.248	16.325	1.88	18	2.66	-	NP
32	10	6	0.052	0.470	5.296	9.728	2.02	14	2.67	-	NP
38	13	6	0.025	0.269	1.626	6.592	2.06	15	2.67	-	NP
38	17	4	0.029	0.212	0.547	5 329	1 94	22	2.67		NP
21	8	2	0.101	4.161	12.429	16.686	2.21	13	2.67	-	NP
58	31	11	0.004	0.053	0.157	0.181	2.16	15	2.67	-	NP
62	27	11	0.004	0.062	0.172	0.210	2.04	17	2.67	-	NP
53	29	10	0.005	0.053	0.169	0.215	2.11	18	2.68	-	NP
71	20	7	0.008	0.107	0.227	0.285	2.02	10	2.66		NP
/1	20	/	0.000	0.107	0.227	0.205	2.02	15	2.00	-	111
11	57	32	0.000	0.004	0.011	0.020	1.77	25	2.72	52	32
27	56	17	0.003	0.009	0.030	0.054	1.93	29	2.70	63	39
83	13	4	0.026	0.168	0.230	0.272	1.97	20	2.66	-	NP
81	16	3	0.040	0.155	0.179	0.192	1.53	41	2.66	-	NP
											i

(b) 土層之各種物理性質。

(c) 地層柱狀圖、N 值、P 波及 S 波速度。

圖 2.10 提供給申請者之基本鑽探資料(以 TCU083 中央大學為例)。包含 地層描述、土壤物理性質試驗結果、N值、P波和S波速度(包含數 值)、測站平面圖與照片等。

第三章 剪力波速經驗式與 Vs30 外插法

3.1 剪力波速經驗式之建立

剪力波速經驗式因為具備快速及經濟的優點,已有許多相關文獻討 論。Kuo et al. (2011)整理了十三個國內外頗具代表性的成果,並建立了適用 於台北盆地以及宜蘭地區的剪力波速經驗式。本研究參考上述論文並簡化 其研究流程,建立台灣全區和各別區域之剪力波速經驗式。台灣 TSMIP 自 由場強震站的測站編碼是以所在地區的縮寫命名,其後加上三碼數字,由 北邊逆時針開始各區域分別為 TAP、TCU、CHY、KAU、TTN、HWA 及 ILA (各區域之分佈可參考圖 2.2)。

Ohta and Goto (1978a, 1978b) 在現地進行標準貫入試驗時,於地表設 置接收器,利用鑽桿貫入土層時產生的 SV 波同時進行上孔式波速量測,然 後使用試驗所得的各種參數進行多變數回歸分析,獲得剪力波速經驗式, 此研究也是第一個將多變數回歸分析應用到剪力波速經驗式的研究; Hamilton (1976)和 Holzeret al. (2005)的研究則是求得剪力波速與深度兩 者間的關係式;另外也有其他許多研究是計算剪力波速與 N 值間的關係式 (Ohsaki and Iwasaki, 1973;Imai, 1977; Seed and Idriss, 1981; Pitilakis et al., 1999; Hasancebi and Ulusay, 2007; Sykora and Stoke, 1983; Lee and Tsai, 2008);也不乏採用多變數回歸建立剪力波速與兩種以上土層參數經驗式的 研究(Ohta and Goto, 1978b; Lee, 1992; Chen et al., 2003; Chapman et al., 2006; Kuo et al., 2011; Akin et al., 2011),其中,Chen et al. (2003)、Lee and Tsai (2008)以及Kuo et al. (2011)所使用的資料皆來自本中心的EGDT。上 述相關研究的結果皆列於表 3.1 以方便查詢和比較。

本研究使用至 2010 年之最新鑽探資料進行回歸分析以建立剪力波速經 驗式,由於大部分測站之鑽探深度為 35 公尺,且波速經驗式日後之應用目 標應是深度 30 公尺以內之土層,為避免少數深度較大的資料影響回歸分析 結果,另外由於此鑽探計畫當初即設定在標準灌入試驗中每個試體之敲打 次數大於 50 後即可停止試驗,所以同樣 N 值為 50 的情況之下,其剪力波 速可能會有極大的差異,故僅選擇深度 35 公尺以內且 N 值小於 50 之樣本

進行分析。本研究所採用的回歸分析流程係參考 Kuo et al. (2011), 再加以 簡化而成,其步驟如下:

1.簡化土層種類:依照統一土壤分類結果將土壤分為砂質(Sand)及黏 土(Clay)兩種,其中砂質包括 SC、SP、SM 和 SW,黏土包括 CL、ML、 CH 和 MH,若該資料屬於卵礫石層(GM 或 GP),則因其膠結度較差容易 造成波速變化大,且 N 值常會大於 50 以上,故本研究不對其進行分析,若 是進行分類後砂質或黏土之樣本數目小於 100,則不進行分類而將所有土壤 一同進行分析。

2.必要時考慮土層之地質年代:前人的研究成果中均認為土層的地質年代會影響其土壤參數與剪力波速間的關係,但 EGDT 之土壤樣本並未經過定年,僅能以測站位置與地表地質分佈圖進行判斷,但我們認為測站之地表地質年代與其地下地質年代並不一定相同,且按照不同之測站分區進行分析已經在某種程度上考慮了不同地質年代的影響,故僅在必要時另外考慮土層之地質年代。

3.經驗法則與逐步選擇法測試:統計學家建議,根據經驗法則任何兩個 自變數間的相關係數應該小於 0.7 (Anderson et al., 1984);逐步選擇法是順 向選擇法與反向淘汰法的結合,在此我們設定以 F 概率低於 0.05 進入,高 於 0.1 淘汰 (Hair et al., 2006)。此兩個測試目的在於避免回歸分析時自變數 間的相關性過高而產生的多重共線性效應 (Multicollinearity),若資料通過 這兩項測試,則代表 N 值與深度間之相關性不高可採用多變數回歸。

4.統一採用如式(3.1)冪次型態之方程式進行分析,求出係數a、b及c,

$$Vs = a \cdot N^b \cdot D^c \tag{3.1}$$

但若資料未通過步驟2之任一項測試,則僅對剪力波速(Vs)和N值進行回歸分析。

上述之多變數回歸分析方法所用的資料皆於步驟 3 時測試自變數之間 的相關性高低,若相關性過高,則不採用多變數分析,若相關性低於上述 標準,則代表此區域之地質特性使 N 值與深度之相關性不高,可進行多變 數回歸而不受共線性之影響,故採用本研究方法則 N 值不須經過有效覆土 壓力修正去除深度效應,可避免修正時額外產生的誤差。

氣象局所使用之強震站分區某種程度上也代表不同的地質區域,因此 本研究將對七個分區的鑽探資料皆進行剪力波速經驗式的回歸分析,同時 也考慮以全台灣為一個區域進行分析。在 TTN 和 HWA, 若要考慮不同土 壤種類,則會造成資料個數少於 100 個,為顧及回歸分析之合理性,因此 在這兩個區域不考慮土壤分類。而考慮到台北地區(TAP)之地質背景較為 複雜,盆地內皆屬第四紀沖積層、大屯火山區屬更新世地層、東北角一帶 則屬中新世地層、而南部山區則屬漸新世地層,此外,盆地外之測站 N 值 僅在地表附近時因受風化作用影響而可能低於 50,但這些少數的資料點卻 因屬於各種不同地質年代而與盆地內之資料點呈現相當不同的特性,有鑑 於此,本研究在台北地區僅使用盆地內之測站資料進行分析。TCU 兩種土 壤、HWA 所有土壤、ILA 的黏土質土壤以及台灣全區的砂質土壤雖然通過 經驗法則測試,但在逐步選擇法時淘汰了與剪力波速相關性較低的深度因 子,所以我們對這些資料僅採用單變數回歸分析,而其他的資料則皆通過 兩個測試,故可採用多變數回歸進行分析。在此定義偏差值(Err)為實際 測量波速 (V_{obs}) 之自然對數值減去依經驗式計算所得波速 (V_{est}) 之自然對 數值,

$$\mathrm{Err}=\ln V_{obs}-\ln V_{est} \tag{3.2}$$

其標準差則為 σ_{Err}。根據前述的方法分析所有七個分區和台灣全區的資料, 所得之剪力波速經驗式、估算之波速標準差和所採用的樣本個數則如表 3.2 所列。

本研究所提出之剪力波速經驗式僅能對深度 35 公尺內之土層使用,且 其N值必須低於 50。表 3.2 中的剪力波速經驗式也一同繪於圖 3.1,若經驗 式之波速值同時為N值與深度的函數,則在圖中則以深度為 15 公尺作一代 表曲線。受到地質條件差異之影響,圖 3.1 中可看出 TTN 與 HWA 兩個地 區之波速值明顯高於其他地區,而其他地區除了 TCU 的黏土質土壤之外, 幾乎都集中在同一波速區間。而各區域之經驗式也各自與其資料點之分佈 繪於圖 3.2,其中灰色菱形和三角形分別為砂質土壤和黏土質土壤資料點之 分佈;若考慮土壤分類之區域,則以灰色菱形代表所有資料點。若是以全

台為同一區域回歸其剪力波速經驗式,則如圖 3.2 中可見,回歸結果將被大 多數速度較低的資料點所影響,而無法正確反應出波速偏高的情況(尤其 在台灣東部的 HWA 及 TTN),因此波速經驗式分區討論確有其必要性。

今年度行政院公報所公布之最新「建築物耐震設計規範及解說部分規 定修正規定」(2011)中,允許考慮場址地盤種類時可採用剪力波速經驗式 由既有之標準貫入N值計算其 Vs30 數值,而波速經驗式則建議使用「道路 橋示方書同解說,V耐震設計編」(1996)之公式,然而,該公式中有使用 單壓無圍壓縮強度(q_n)而使該公式複雜化,故本研究表 3.1 中是列出「道 路橋示方書同解說,V耐震設計編」(2002)版本中之較新且較簡單一致之 公式 4.5.1,此修正規定已於今年7月1日開始實施。然而,仔細分析後發 現該波速經驗式有以下之缺失:1.對黏土質土層僅適用於 N≦25 之情況; 2.在符合之條件下黏土質或砂質土層計算所得之最大剪力波速值仍不足300 公尺/秒,與台灣之波速井測結果差異甚大。該公式與本研究所得之全台結 果比較如圖 3.3,其中 JRA 之砂質土層波速似乎略為偏低,當然若要將波速 經驗式實際應用於耐震設計規範中,適當的考慮其安全餘裕而降低所得波 速值是必要的。本研究提出之剪力波速經驗式是經由分析遍布全台之大量 鑽探資料而得,且所採用之資料庫中所有深度之 N 值都有其對應之波速 值,相較之下應較能實際反應台灣之近地表地質特性,本結果應可供未來 規範再次修訂之參考。

3.2 Vs30 外插法之比較與評估

如前述(2.2.2 測站場址特性調查內容),EGDT 中因而包括 54 個深度 未達 30 公尺之測站,故其 Vs30 數值無法直接經由測量結果計算而得。經 由其他相關文獻中得知,由於各國法規之差異或各種鑽井之原有用途不 同,因此造成深度不足 30 公尺等等類似的狀況在其他國家亦常見到。Boore (2004)利用加州的鑽探資料驗證了數種常用的外插法的準確性,其中, 假設 Vs30 與 Vs(d)(d 為 10 至 29 的整數,Vs(d)代表該深度的平均波速) 的對數值間存在線性關係:

$$\log V s 30 = a + b \log V s(d) \tag{3.3}$$

所推導出的外插法具有最佳結果,式(3.3)中 a 和 b 代表各深度中觀測值 與估計值線性關係的截距與斜率,此方法就是利用既有之深度達 30 公尺以 上的波速資料計算出該區域各深度的常數值 a 和 b 後,在同一區域的近地 表波速變化趨勢相同的假設前提下,即可用此關係式外插其他深度未達 30 公尺的波速剖面。本研究將 EGDT 中可用的波速剖面資料同樣依照其測站 編碼分區,求出各區域深度由 10 至 29 公尺(以1 公尺間隔遞增)的係數 a 和 b,以及式(3.3)與各區域實際資料點的決定係數,以供後續比較使用, 各區域之回歸結果列於附錄一以供參考。不同深度的平均波速值則依式 (3.4)計算所得,

$$Vs(d) = d / \sum_{i=1}^{n} \frac{z_i}{Vs_i}$$
 (3.4)

將相鄰波速資料點之間視為一地層厚度,則Z為各地層厚度,n則代表深度 d之內的地層總層數。

Boore and Joyner (1997) 在更早則認為剪力波的走時 (S_{tt}) 與深度之間應是呈指數關係,

$$S_{tt}(d) = a \cdot d^b \tag{3.5}$$

公式(3.5)中的係數 a 代表靠近地表之剪力波速值,b 則是剪力波走時和 深度多項式函數關係中的指數(注意式(3.5)與式(3.3)之係數 a 和 b 並 無關係),某一深度未達 30 公尺的波速剖面,若利用式(3.5)透過最小平 方法求得係數 a 和 b 後,將深度 d 以 30 帶入,可得知 30 公尺的預估剪力 波走時,然後即可求出一外插之 Vs30 數值。

另外有部份研究則是將既有波速剖面的最深處(d)之波速(V_{dep})假 設為一定值直達 30 米 (Boore, 2004; Kuo et al., 2009),則其 Vs30 則可由下 式求得:

$$Vs30 = 30/(\frac{d}{Vs(d)} + \frac{30 - d}{V_{dep}})$$
(3.6)

此外插法是三種方法中最容易理解與使用的。Kuo et al. (2011)使用 EGDT 在台北及宜蘭地區的鑽探資料分別對上述之最小平方法(LSS)、統計外插 法(STS)以及底部速度定值法(BCV)等三種 Vs30 外插法進行測試比較, 結果顯示 BCV 法雖然原理與計算最為簡單,但準確性與穩定性皆為最佳。

本研究採用至 2010 年為止之最新 EGDT 鑽探結果,速度剖面深度的統 計狀況如圖 3.4 所示。其中共有 385 個深度至少達 30 米之速度剖面資料, 可供本研究測試並探討適合台灣地質狀況使用之 Vs30 外插法。本研究採 Kuo et al. (2011)之研究方法,假設三個不同的已知深度 15、20、及 25 公 尺,分別以前述三種外插法在三種假設深度之情況下進行外插計算每一測 站的 Vs30,再和由實際速度剖面所計算出之結果進行比較,即可找出精確 性最高,最適合台灣地區使用之外插法。我們則定義一誤差百分比(Err%), 用來量化預估之 Vs30 與實際量測值的誤差:

$$Err\% = \frac{\sum |V_{obs} - V_{est}| / V_{obs}}{n} \times 100\%$$
(3.7)

Vobs 是 PS-logging 測量所得的平均剪力波速值, Vest 是外插法所估算的平均 剪力波速值,n 代表資料個數。測試所得結果列於表 3.3。在 15、20、和 25 三種假設深度下,BCV 法所得的結果無論是誤差值或標準差值都為三種方 法當中最小,此結果表示在台灣島的近地表波速特性條件下,BCV 法是最 準確且穩定的 Vs30 外插法。若把三種外插法在各假設深度的 Vs30 估算值 與實際值之結果以圖形表示 (圖 3.5),其中藍色圓圈、黑色方形、和紅色 菱形等符號分別代表在假設已知深度為 15、20、與 25 公尺時的情況,結果 顯示,就同一種外插法而言,已知深度越深,則估算之 Vs30 數值理所當然 地越準確;而三種外插法 LSS、STS、和 BCV 在同樣的已知深度時則是由 上往下呈現越來越收斂且接近觀測值與預估值 1:1 的斜直線,代表在同樣 條件之下,外插法之精確度為 BCV 最佳而 LSS 最差。

3.3 綜合應用與討論

對某些鑽探深度未達 30 公尺且無量測波速的既有工程地質鑽孔,則可 利用前兩節所討論之剪力波速經驗式與 Vs30 外插法以求得其 Vs30 數值, 可作為地盤分類之參考。我們使用與 Kuo et al. (2011)所選擇之相同鑽孔, 分別為位於臺北盆地之 SS-B-09 與位於宜蘭平原之 DB-151 來進行實際應 用,鑽孔資料來源為中央地質調查所的「工程地質探勘資料庫查詢系統」。

由地調所資料庫中可獲得鑽孔之 N 值、對應深度與其土壤種類,然後採用 表 3.2 中之 TAP 和 ILA 的經驗式分別計算各深度之剪力波速,所得結果如 圖 3.6 所示。之後採用 BCV 法假設 DB-151 鑽孔底部深度 25 公尺至 30 公 尺之波速皆為定值 273.88 m/s;SS-B-09 鑽孔底部深度 25.5 公尺至 30 公尺 之波速皆為定值 279.73 m/s,則可計算其 Vs30 數值分別為 238.87 m/s 與 211.51 ms,若依照 NEHRP 場址分類標準則兩者皆為 D 類地盤,而 Kuo et al. (2011)所估算之同樣兩個鑽孔之 Vs30 則分別為 238.9 m/s 與 211.0 m/s, 與本研究之結果差異相當微小,代表本研究使用的剪力波速經驗式分析簡 化方法並不影響回歸結果之精確性。若以 EGDT 已有之測站的 Vs30 資料, 在二維平面空間中進行內插,則 DB-151 (E121.783,N24.832)與 SS-B-09 (E121.509,N25.055)座標處的 Vs30 數值分別為 262.80 m/s 和 207.70 m/s, 此結果代表這兩個 CGS 的鑽孔位置之近地表地質狀況並無特殊變化,所以 使用 N 值推估剪力波速之結果與使用既有之 Vs30 數值在空間中內插之結果 並無太大差異。

若是採用表 3.1 中 JRA (2002) 之公式配合 BCV 法推求 DB-151 與 SS-B-09 之 Vs30,則結果分別為 186.7 m/s 與 162.36 m/s,和上述所得之兩 種結果差異都大,顯示 JRA (2002) 之公式若要應用於台灣之鑽孔,則可 能由於地質條件的差異,其計算結果會略為偏低。上述計算所得之 Vs30 數 值整理於表 3.4,以方便互相比對。

Author	Regression equation	Soil type	Samples		
Ohsaki and Iwasaki (1973)	$Vs = 82N^{0.39}$	All	220		
Hamilton (1976)	$Vs = 128D^{0.28}$	Mud	29 sites		
Imai (1977)	$Vs=91N^{0.337}$	All	943		
	$Vs = 80.6 N^{0.331}$	Sand	151		
	$Vs = 102N^{0.292}$	Clay	183		
Ohta and Goto (1978)	$Vs=62.14N^{0.219}D^{0.23} \times 1.000$	Clay			
	1.091	Fine sand			
	1.029	Medium sand	300		
	1.073	Coarse sand			
	1.151	Sand & gravel			
Seed and Idriss (1981)	$Vs = 61N^{0.5}$	All	-		
Sykora and Stokoe (1983)	$Vs = 100.5 N^{0.29}$	Sand	-		
Lee (1992)	$Vs=71.9(D+1)^{0.39}$	SM	126		
	$Vs = 86.1 N^{0.116} (D+1)^{0.244}$	CL	265		
	$Vs = 82.8N^{0.134}(D+1)^{0.233}$	ML	100		
	$Vs = 84.5N^{0.118}(D+1)^{0.246}$	CL/ML	365		
Pitilakis et al. (1999)	$Vs = 145(N_{60})^{0.178}$	Sand	15 sites		
	$Vs=132(N_{60})^{0.271}$	Clay	15 sites		
JRA (2002)	$Vs = 100N^{1/3} (1 \le N \le 25)$	Clay			
	$Vs = 80N^{1/3} (1 \le N \le 50)$	Sand	-		
Chen et al. (2003)	$Vs = 163.59 + 4.09D + 2.2(N_1 - N_{1,avg})$	All	45 sites		
Holzer et al. (2005)	<i>Vs</i> =75.2+3.99 <i>D</i>	Mud	135		
Chapman et al.(2006)	$Vs = 85.13 N^{0.153} \sigma_v^{0.147}$	Sand	223		
	$Vs = 92.25 N^{0.266} \sigma_v^{0.072}$	Clay	154		
Hasancebi and Ulusay	$Vs=90N^{0.309}$	All			
(2007)	$Vs=90.8N^{0.319}$	Sand	97		
	$Vs=97.9N^{0.269}$	Clay			
Lee and Tsai (2008)	$Vs = 137.153N^{0.229}$	All	28 sites		
	$Vs = 98.07 N^{0.305}$	Sand	15 sites		
	$Vs = 163.15N^{0.192}$	Silt and Clay	15 sites		
Akin et al. (2011)	$V_{s}=38.55N^{0.176}D^{0.481}$	Alluvial sand			
	$Vs = 78.1N^{0.116}D^{0.35}$	Alluvial clay	1652		
	$Vs = 52.04 N^{0.359} D^{0.177}$	Pliocene sand	1035		
	$Vs = 140.61N^{0.048}D^{0.232}$	Pliocene clay			

表 3.1 本研究所收集參考之剪力波速經驗式相關研究之總覽。
Region	Empirical Vs equation	σ _{Err}	Soil type	Samples
СНҮ	$Vs = 114.29 N^{0.130} D^{0.133}$	0.1786	sand	723
	$Vs = 114.02N^{0.115}D^{0.159}$	0.1968	clay	686
HWA	$Vs=219.79N^{0.159}$	0.2535	all	166
ILA	$Vs = 142.23N^{0.165}D^{0.05}$	0.1806	sand	327
	$Vs = 139.64 N^{0.208}$	0.2166	clay	267
KAU	$Vs = 112.46N^{0.194}D^{0.118}$	0.2438	sand	380
	$Vs = 131.52N^{0.129}D^{0.113}$	0.2018	clay	330
TAP	$Vs = 99.08N^{0.233}D^{0.121}$	0.2570	sand	219
	$Vs = 118.03 N^{0.156} D^{0.137}$	0.2289	clay	479
TCU	$Vs = 138.36N^{0.220}$	0.2762	sand	250
	$Vs = 172.98N^{0.207}$	0.2874	clay	202
TTN	$Vs=233.35N^{0.171}D^{0.088}$	0.2059	all	48
Taiwan	$Vs = 127.35 N^{0.245}$	0.2554	sand	1645
	$Vs = 129.12N^{0.200}D^{0.065}$	0.2534	clay	1728

表 3.2 本研究回歸分析所得之台灣各區域和全區之剪力波速經驗式。

表 3.3 本研究所提出比較之三種外插法在不同假設深度時與實際測量值之 誤差百分比。在此所用的 385 個波速剖面實際深度皆在 35 公尺以

Assumed depth	Err% of 385 boreholes			
(m)	LSS	STS	BCV	
15	11.24%	6.98%	6.60%	
15	±8.16%	±6.22%	$\pm 5.65\%$	
20	8.03%	4.39%	3.06%	
20	±6.21%	±3.76%	±2.83%	
25	5.66%	2.05%	1.15%	
25	±4.45%	±1.79%	±1.24%	

上,"±"符號後面之百分比值代表該案例之標準差。

	CGS 鑽孔之 Vs30(公尺/秒)		
推永 VS30 之方法	DB-151	SS-B-09	
本研究之波速經驗式+BCV	238.87	211.51	
JRA (2002) 之波速經驗式+BCV	186.70	162.36	
使用 EGDT 既有之 Vs30 內插	262.80	207.70	

表 3.4 以不同方式推估 CGS 資料庫中兩個鑽孔的 Vs30 數值之結果。

圖 3.1 台灣全區與各分區之剪力波速經驗式。"@15"代表此曲線是以深度 15 公尺為一代表,粗線代表砂質土壤之結果,而細線代表黏土質土 壤之結果。

圖 3.2 各區域之剪力波速經驗式與其資料點之分佈情況(若經驗式中有深 度參數,則以深度 15 公尺作為代表)。灰色菱形與灰色三角形分別 代表砂質和黏土質土壤;若該區域不考慮土壤種類,則僅以灰色菱 形代表全部資料點。

圖 3.3 日本 JRA 之波速經驗式(粉紅虛線)與本研究所得之全台波速經驗 式(黑色實線)之比較,台灣全區之黏土質土層經驗式同樣以深度 15 公尺為代表。

圖 3.4 強震測站工程地質資料庫中已鑽探的波速剖面深度分佈直方圖。深 度大於 40 公尺之剖面則歸納在一起,大部分深度皆介於 30 至 35 公 尺之間,由左至右代表之波速剖面個數分別為 6、1、4、43、312、 53 和 20,共計 439 個。

圖 3.5 三種外插法的 Vs30 估算值(y 軸)與測量值(x 軸)之比較,由上 到下為 LSS、STS、和 BCV 法,三種顏色(藍、黑、紅)分別代表 三個不同的假設已知深度(15、20、25 公尺)。

圖 3.6 由 CGS 資料庫中選擇之鑽孔 N 值資料與推算之剪力波速剖面。 SS-B-09 與 DB-151 分別位於臺北盆地與宜蘭平原。兩孔之 N 值剖面 深度僅達 25.5 與 25 公尺,依照 BCV 法所推估而得知 Vs30 分類, 兩者皆為 D 類場址。

第四章 自由場強震站之地盤分類

本研究之優勢在於使用豐富且均勻遍佈全台的 EGDT 鑽探資料來進行 近地表剪力波速特性的分析。在本章節中,將利用第三章所述之 BCV 外插 法推求其他 54 個剪力波速剖面未達 30 公尺的測站的 Vs30 數值,然後對所 有已鑽探的 439 個 TSMIP 自由場強震站進行場址分類,並比較前人之相關 研究結果,以進一步突顯本研究分類結果之準確性。

4.1 場址分類結果與 Vs30

已完成鑽探的 439 個 TSMIP 自由場強震站的 Vs30 數值可由測量的剪 力波速剖面以公式(3.4)求出,而其地盤分類則可依 NEHRP 的規範(表 4.1)進行,其中波速剖面深度若未滿 30 米(共 54 個測站)則輔以 BCV 法 來推估其 Vs30 並進行分類,已鑽探測站包括有 A、B、C、D 和 E 等各類 地盤。而台灣現行之建築物耐震設計規範的地盤分類準則可參見表 4.2,其 最明顯的改變是把第一類與第二類地盤的界限由原來之 360 m/s 往下修訂 為 270 m/s, 也就是說, 只要 Vs30 大於等於 270 m/s, 則依台灣現行規範該 場址將會被分類為第一類的堅實地盤。然而,全世界已發表的場址分類相 關研究中,幾乎都採用 NEHRP 或分類條件與其相同之準則,故本研究之分 類準則也採用世界通用的 NEHRP 之 Vs30 地盤分類規範,分類結果如圖 4.1 所示。A 類測站僅有一個, 位於東部海岸山脈; B 類測站共 29 個, 主要分 布於台灣北部,另零星分布於山區;C 類測站共 200 個,分布於台灣西北 部、中央山脈麓山帶、及海岸山脈;D類測站共193個,分布於西部平原、 台北盆地及宜蘭平原;E類測站僅16個,零星的分布於各平原或盆地區域。 由上述結果發現絕大多數的已鑽探測站係屬於 C 或 D 類地盤,比例高達 89.5%,造成此現象的其中一個主要因素是因為氣象局的自由場強震站大多 設置在人口集中的各都會區以達成輔助防減災的功能,而人口集中處又通 常較靠近盆地或平原地區;另一因素則是此鑽探計畫所選擇的測站也是以 人口集中區為優先,且位於山區的測站常因設置地點較陡峭造成鑽探機具 無法到達附近而取消作業,因此 EGDT 中大多數的已鑽探測站近地表地層 主要為沈積物或是較軟弱的風化岩石所組成,而其他屬於 A、B 和 E 類地

盤的測站,數目總和則僅佔了 10.5%,本研究所使用之已鑽探測站座標、 Vs30 數值與場址分類結果可參見附錄二。

4.2 相關成果之比較與討論

由於 921 集集地震及其主要餘震的強震資料被 NGA 資料庫所採用,所 以 TSMIP 自由場的 Vs30 或場址相關研究亦頗受國外研究學者之注意,本 研究在這一小節將列出幾個較知名的台灣 Vs30 或場址分類的相關研究成 果,並與本研究之成果一起討論。

附錄二中列出 439 個 EGDT 中已鑽探測站之資料包括 TWD97 系統座 標位置、實際測量和用外插法規推估的 Vs30 數值和場址分類結果。除此之 外,另外也列出這些測站在 Chiou and Youngs (2008)、Lee and Tsai (2008)、 Lee et al. (2001) 以及 Phung et al. (2006) 等研究中的成果以供比較。較早 期的研究如 Lee et al. (2001) 和 Phung et al. (2006) 僅有場址分類結果而 未提供各測站之 Vs30 數值。Lee et al. (2001) 使用地質及地貌資料將 708 個 TSMIP 自由場測站加以分類,在輔以反應譜形貌(Response Spectral Shape, RSS)和頻譜比法(Horizontal-to-Vertical Spectral Ratio, HVSR)加以確認; Phung et al. (2006) 採用反應譜比對的方法將 333 個強震站進行分類,但此 方式僅能將場址分為土層(Vs30≦360 m/s)及岩層(Vs30>360 m/s)兩類。 Chiou and Youngs (2008) 和 Lee and Tsai (2008) 的研究當中則另外提供了 各測站的 Vs30 數值。Chiou and Youngs (2008) 使用 2000 年至 2004 年間 鑽探的 165 個 EGDT 的測站資料,對每一個 Geomatrix 第三字母場址種類 結果,回歸分析 Vs30 與高程的關係式,再以此估算另外 136 個測站的 Vs30 數值,Geomatrix 是另一種場址分類方式,以三個字母分別描述該場址的儀 器設置場所、地質圖之區域地質和岩土試驗之地下特性,其分類準則可參 見表 4.3,但因其分類準則較複雜故目前已較少使用,因此附錄二中其場址 分類結果為本研究自行依 NEHRP 準則分類以便於比較,其 Vs30 數值若列 於中括號之中,代表是由公式推算而得,其他測站的 Vs30 則是從 EGDT 波 速剖面而得,與本研究之結果有小幅度之差異乃是因為計算 Vs30 時假設各 地層片段之方式不同所導致,此差異量很小故在此不予討論; Lee and Tsai

(2008)則使用了 257 個 EGDT 測站的鑽探資料(2000 年至 2005 年)與 4885 筆地質調查所 Geo2005 的資料,採用地質內插法技術推算台灣全島的 Vs30 數值分布狀況,其中也包括各強震測站的 Vs30 數值及其場址分類, 且將場址種類 C和D 更加細分為 C1 (360-490 m/s)、C2 (490-620 m/s)、 C3 (620-760 m/s)及 D1 (180-240 m/s)、D2 (240-300 m/s)、D3 (300-360 m/s)。

若要比較上述4個強震站的 Vs30 估算結果和場址分類結果之準確性, 則需有一參考標準,本研究採用式(3.7)來比較實際井測所得與其他研究 推估之 Vs30 間的差異,故最多有 385 個測站結果可供比較;另外再以附錄 二中本研究之分類結果來比較場址分類結果之差異處,故共439個測站(即 另外包括波速剖面未達 30 米之 54 個強震站)可進行比較。Lee et al. (2001) 之場址分類結果中有 419 個測站和本研究所使用之測站相同,其中有 276 個測站與本研究之分類結果不同,在其結果中共有 125 個測站屬於 E 類地 盤,其中大多分佈於西部平原區及臺北盆地內,而部份應屬C類地盤之HWA 及TCU 测站也被分為 D 類地盤,場址分類不同的比例高達 66%。Phung et al. (2006)之結果中共有 278 個測站與本研究相同,其中 96 個測站分類不同, 比例約為 35%,此乃因其分類僅為土層及岩層兩類故分類不同之比例較 低。Lee and Tsai (2008) 與本研究可供場址分類比較之共有測站共 436 個, 場址分類不同共 80 個,比例大幅改進為約 18%,此乃因該研究採用了 EGDT 資料庫中 2000 年至 2005 年間的鑽探資料,故若將 436 個共有測站以鑽探 時間區分為2005年以前和2006年以後,則其分類不同之比例則分別為13% (34/255) 與 25% (46/181), 2006 年之後鑽探的測站分類不同的比例明顯 較高,這個比率才是實際反應該研究對未知場址的分類錯誤率。Chiou and Youngs (2008) 推求出 Vs30 的 136 個強震站中,有 115 個已有超過 30 公 尺之波速剖面可供比較(另外21個測站皆有波速測量,但剖面未達30公 尺),其中36個測站分類不同,比例為31%。Vs30測量值與預估值間的差 異則以 Err%來計算, Lee and Tsai (2008) 之研究中共 382 個測站有 30 公 尺以上波速剖面,其誤差分別為 2005 以前為 13%, 2006 以後為 27%,皆 納入比較; Chiou and Youngs (2008) 之研究中有 115 個共有測站可供比較,

其預估之 Vs30 數值的 Err%約為 23%。將此 382 及 115 個測站的 Vs30 實際 值和預估值繪圖比較結果於圖 4.2°在此補充說明本研究之所以也將 Lee and Tsai (2008)研究中所使用的 2005 以前的鑽探測站的 Vs30 數值一同納入比 較之原因,係因該研究所採用之地質內插法似乎在計算後會將得出的結果 取代原有測站的數值,因此會發現在該研究所提供之結果中部份測站之 Vs30 數值與其原本採用之實際測量數值落差較大,基於此原因故將其使用 之測站一同納入比較。圖 4.2 中可見紅色三角形代表的 Lee and Tsai (2008) 之推估 Vs30 上限幾乎都被限制於 760 m/s,應該是與其所採用的地質內插 法的参數設定有關,但仍有兩三個測站略大於 760 m/s;而藍色菱形代表 Chiou and Youngs (2008) 推估的 Vs30, 其數值普遍更低, 可能是該研究所 採用的 Geomatrix 第三字母的分類方法,其最堅硬之 A 類場址只要 Vs>600 m/s 即可,但 NEHRP 準則中的部份 C 類場址即可滿足此條件,換言之,此 方法可能對 Vs30 大於 600 m/s 以上的測站即較無辨識能力。我們由圖 4.2 之分佈狀況推測 Lee and Tsai (2008) 在預估 Vs30 的過程加上了某些限制, 使 Vs30 之數值不至於太高,以較保守的方式估計 Vs30 在地震工程及防減 災的角度來看雖是合理,但很顯然這個限制方式卻無法只針對需要限制的 場址發揮作用,於是,雖然許多實際 Vs30 較高的測站其值被保守地低估, 但可以看到另有許多實際 Vs30 較低的測站卻被高估,這將會導致實際應有 的場址放大效應被忽略,為工程應用上所不樂見。整體來看,此兩研究所 得結果與實際測量值皆仍存在頗大之誤差,與圖 3.5 比較更可發現,只要有 一深度達 15 公尺以上之波速剖面,採用前述之任一外插法所估算之 Vs30 數值(參照表 3.3),其準確性遠大於上述兩種研究使用之方法(Lee and Tsai, 2008; Chiou and Youngs, 2008) 之結果。

	•	
NEHRP 場址種類	地質簡述	Vs30 範圍(m/sec)
А	Hard rock	Vs30>1500
В	Firm to hard rock	1500≥Vs30>760
С	Dense soil and soft rock	760 2 Vs 30 > 360
D	Stiff soil	360≥Vs30≥180
Е	Soft soil	180>Vs30

表 4.1 NEHRP 之場址分類標準

地盤種類	Vs30 範圍(m/sec)
第一類地盤(堅實地盤)	Vs30≧270
第二類地盤(普通地盤)	$180 \le Vs30 < 270$
第三類地盤(軟弱地盤)	Vs30<180

表 4.2 台灣建築物耐震設計規範之最新場址分類標準

第一字母:	分類準則概述		
<u> 儀器設置場所</u>			
	Free-field instrument or instrument shelter. Instrument is		
	located at or within several feet of the ground surface.		
A	One-story structure of lightweight construction. Instrument is		
	located at the lowest level and within several feet of the		
	ground surface.		
B	Two- to four-story structure of lightweight construction.		
	Instrument is located at the lowest level and within several		
	feet of the ground surface.		
C	Two- to four-story structure of lightweight construction.		
	Instrument is located at the lowest level in a basement and		
	below the ground surface.		
D	Five or more story structure of heavy construction. Instrument		
	is located at the lowest level and within several feet of the		
	ground surface.		
E	Five or more story structure of heavy construction. Instrument		
	is located at the lowest level in a basement and below the		
	ground surface.		
F	Structure housing instrument is buried below the ground		
	surface (for example, a tunnel)		
G	Structure of light or heavyweight construction, instrument no		
at lowest level			
第二字母:			
地質圖之區域			
地質			
Н	Holocene (Recent) Quaternary (< 15000y bp)		
Q	Pleistocene Quaternary (< 2my bp)		
Р	Pliocene Tertiary (< 6my bp)		
М	Miocene Tertiary (< 22my bp)		
0	Oligocene Tertiary (< 36my bp)		
E	Eocene Tertiary (< 58my bp)		
L	Paleocene Tertiary (< 63my bp)		
K	Cretaceous (< 145my bp)		
F	Franciscan Formation (Cretaceous/Late Jurassic)		
J	Jurassic (< 210my bp)		
Т	Triassic (< 225my bp)		
Z	Permian or older (> 225my bp)		
V	Volcanic (extrusive)		
N	Intrusive		
G	Granitic		

表 4.3 Geomatrix 的 3 字母場址分類準則

第三字母: 岩土試驗之地	分類準則概述
下行住 A	Rock Instrument on rock (Vs > 600 mps) or $< 5m$ of soil over
1	rock.
В	Shallow (stiff) soil. Instrument on/in soil profile up to 20m
	thick overlying rock.
С	Deep narrow soil. Instrument on/in soil profile at least 20m
	thick overlying rock, in a narrow canyon or valley no more
	than several km wide.
D	Deep broad soil. Instrument on/in soil profile at least 20m
	thick overlying rock, in a broad valley.
E	Soft deep soil. Instrument on/in deep soil profile with average
	Vs < 150 mps.

表 4.3 (續) Geomatrix 的 3 字母場址分類準則

圖 4.1 已鑽探之 439 個 TSMIP 自由場測站分佈及其場址分類結果。黃色倒 三角形為 A 類場址、靛色菱形為 B 類場址、藍色正方形 C 類場址、 綠色三角形為 D 類場址、紅色圓形為 E 類場址。

圖 4.2 以井測波速資料所計算之實際 Vs30 數值(Y軸)與 Lee and Tasi(2008)
及 Chiou and Youngs (2008) 兩研究中所推估之 Vs30 數值(X軸)
的比較。

第五章 結論與展望

有鑑於國震中心與氣象局合作進行的強震儀測站地質鑽探調查計畫業 已超過10年,已調查測站遍布全台,資料豐碩,也已有許多相關著作包括 碩博士論文、國內外會議論文以及國內外期刊論文發表,故本研究特統整 相關資料,仔細說明此鑽探計畫之起源、技術來源、各項試驗工作內容及 參數等,並列舉出重要之衍生論文供讀者和使用者參考,使其更加了解此 資料庫在不同應用層面上的研究成果。且因台灣之地震儀遍布密度冠於全 球,加以地震活動頻繁,所以豐富且高品質的地震資料向來頗受國外地震 學與地震工程學者之重視,也因此本「強震測站工程地質資料庫」之測站 鑽探結果於數年前已被美國 NGA 計畫之資料庫大量採用作為其場址效應 分析之重要參考資料。

本研究為將 EGDT 之內容落實於地震工程相關應用方面,使用資料庫 中的剪力波速、SPT-N、深度以及土壤分類等參數,並利用其測點遍布全台 之優勢,回歸分析台灣各分區以及台灣全區之剪力波速經驗式,本研究所 提出之分析方法與傳統方式不同,使用之 N 值不須先經過有效覆土壓力修 正,而是以經驗法則和逐步選擇法試驗 N 值及深度等兩個自變數之間的相 關性,若可通過試驗,則代表相關性不高,可採用複回歸分析方法,若未 通過測試則代表其相關性過高,若同時採用此兩自變數則會有多重共線性 之情況,故僅以 N 值與波速進行回歸分析。地質年代對波速關係式的影響 在本研究中的大部份地區可忽略,這是由於對測站資料進行分區時就等於 考慮了大略的地質狀況,而分析時僅採用 N 值小於 50 與深度小於 35 公尺 之地層資料之挑選過程再次挑選了更為相近的地質年代的資料,所以本研 究各分區中僅有 TAP 區域再經過另一次挑選位於臺北盆地內之測站資料來 進行回歸分析,此乃因 TAP 區域的地質背景過於複雜且盆地內之地層特性 格外的重要。回歸結果顯示 TTN 與 HWA 兩個地區之波速值明顯高於其他 地區,而TCU的黏土質土層之波速也略為偏高,除此之外,其他地區之波 速經驗式幾乎都集中在同一區間。台灣現行之建築物耐震設計規範與解說 中建議可採用波速經驗式估算特定場址之 Vs30,再依地盤分類標準分類,

但其目前所建議採用之波速經驗式乃出自於日本道路協會1996年所出版之 「道路橋樑示方書同解說,V耐震設計編」,該公式與本研究之結果比較之 下則波速略為偏低,當然若要將波速經驗式實際應用於耐震設計規範中, 則適當的考慮其安全餘裕而降低所估算的波速值確實合理,但這也可能代 表日本之剪力波速經驗公式並不適用於台灣之地質狀況。本研究提出之剪 力波速經驗式是經由分析遍布全台之大量鑽探資料而得,且所採用之資料 中所有波速值皆有其對應之N值與深度,相較之下應較能實際反應台灣之 近地表地質特性,可供規範將來再次修訂之參考。

EGDT 測站鑽探資料中,有 54 個測站因為各種因素導致其鑽探深度或 波速測量剖面深度並未達到 30 公尺,因此無法直接計算其 Vs30 數值,為 妥善利用這些測站的波速資料,本研究嘗試比較各種常見的 Vs30 外插法, 利用精確度最高的方法來推估這 54 個測站的 Vs30 數值。因此,先採用其 他 385 個深度 30 公尺以上之波速剖面資料, 在假設深度 15、20、25 公尺 的情況之下,利用各種外插法推估其 Vs30 數值,再與真正之 Vs30 數值互 相比較,量化其誤差,而誤差量最小的方法是原理最簡單的底部速度定值 法 (BCV), 即假設波速剖面之底部速度為一定值, 延伸至深度 30 公尺, 藉此算出其 Vs30。於是這 54 個測站的 Vs30 數值皆經由 BCV 法推估而得, 則共 439 個自由場強震測站已具有 Vs30 數值,且其場址類別也根據 NEHRP 的準則分類完成,列於附錄二。其他前人的相關研究無論是場址分類的結 果或是 Vs30 數值的推估,與本研究實際利用大量的鑽探波速資料的結果相 比之下,精確度均有一段差距,且由比較之結果發現,只要有一深度達 15 公尺或以上之波速剖面,即便任意採用一 Vs30 外插法所估算出的 Vs30, 其準確性將遠大於其他參考地表地質或高程的方法(Lee and Tsai, 2008; Chiou and Youngs, 2008)所估算出來之結果。台灣強震資料在 NGA 資料庫 中佔有相當高的重要性,然而 NGA 相關研究目前所採用的測站場址資料僅 包括至 2004 年之鑽探結果,因此本研究的最新成果也可提供給 PEER 以更 新 NGA 資料庫之內容。

剪力波速經驗式可結合 Vs30 外插法,應用於早期無波速測量且深度小於 30 公尺的工程鑽探結果即可快速估算其 Vs30,使早期鑽探資料也增加其

可用性。本研究嘗試採用地調所工程地質資料庫中位於臺北盆地與宜蘭平 原的 SS-B-09 與 DB-151 工程鑽井,其預估之 Vs30 數值與距離最近的 TSMIP 自由場強震站鑽探結果的 Vs30 數值相去不遠,也初步證實此方法估算之 Vs30 數值尚為合理。

近年來有研究(Wald and Allen, 2007; Allen and Wald, 2009)分析遙測 所得的高精度全球地形坡度資料與各區域的 Vs30 測量結果之關係,再估算 更精細格點之 Vs30 數值,高解析度的全球性公開遙測坡度資料為此方法的 優勢(解析度可達約9角秒(arcsec),即相當於 1/400度(degree)),此方 法所得全球性 Vs30 結果也已被美國地質調查所的地震災害計畫 (Earthquake Harzards Program)採納作為參考。雖然本研究結果顯示若有 井測之波速剖面可供參考,即便深度僅有 15 公尺,所推估之 Vs30 精確度 仍遠大於此類方法所得的結果,然而,對於缺乏鑽孔之特定場址,若能利 用前述之高程或上述之坡度等較易獲得之資訊初步評估該場址之特性,則 也不失為一可行之方法。

參考文獻

- Akin, M. K., Kramer, S. L., and Topal, T. (2011), Empirical correlations of shear wave velocity (Vs) and penetrations resistance (SPT-N) for different soils in an earthquake-prone area (Erbaa-Turkey), Engineering Geology, 119, 1-17.
- 2. Allen, T. I. and Wald, D. J. (2009), On the use of high-resolution topographic data as a proxy for seismic site conditions (Vs30), Bulletin of the Seismological Society of America, 99(2A), 935-943.
- 3. Anderson, D.R., Sweeney, D.J., and Williams T.A. (1984), Statistics for business and economics, second edition. West publishing Company, Taipei.
- Boore, D. M. (2004), Estimating Vs(30) (or NEHRP site classes) from shallow velocity models (depth < 30m), Bulletin of the Seismological Society of America, 94(2), 591-597.
- 5. Boore, D. M. and Joyner, W. B. (1997), Site amplifications for generic rock sites, Bulletin of the Seismological Society of America, 87(2), 327-341.
- Building Seismic Safety Council (BSSC) (2001), NEHRP recommended provisions for seismic regulations for new buildings and other structures, 2000 Edition, Part 1: Provisions, prepared by the Building Seismic Safety Council for the Federal Emergency Management Agency (Report FEMA 368), Washington, D.C.
- Chapman, M. C., Martin, J. R., Olgun, C. G., and Beale, J. N. (2006), Site response models for Charleston, South Carolina, and vicinity developed from shallow geotechnical investigations, Bulletin of the Seismological Society of America, 96(2), 467-489.
- Chen, M. H., Wen, K. L., and Loh C. H. (2003), A study of shear wave velocities for alluvium deposits in southwestern Taiwan, Journal of Chinese Institute of Civil and Hydraulic Engineering, 15(4), 667-677.
- 9. Chiou, B. S.-J., Darragh, R., Gregor, N., and Silva, W. (2008), NGA project strong-motion database, Earthquake Spectra, 24(1), 23-44.
- 10. Chiou, B. S.-J. and Youngs, R. R. (2008), NGA model for average

horizontal component of peak ground motion and response spectra, PEER Research Report, University of California, Berkeley.

- Hair, J.J.F., William C.B., Barry, J.B., Rolph, E.A., and Ronald, L.T. (2006), Multivariate data analysis, 6th edition. Upper Saddle River. NJ, Pearson Education International.
- 12. Hamilton, E. (1976), Shear wave velocity versus depth in marine sediments: a review, Geophysics, 41(5), 985-996.
- Hasancebi, N. and Ulusay, R. (2007), Empirical correlations between shear wave velocity and penetration resistance for ground shaking assessments, Bulletin of Engineering Geology and Environment, 66, 203-213.
- Huang, M. W., Wang, J. H., Hsieh, H. H., Wen, K. L., and Ma, K. F. (2005), Frequency-Dependent Sites Amplifications Evaluated from Well-Logging Data in Central Taiwan, Geophysical Research Letter, 32, L21320.
- Huang, M. W., Wang, J. H., Hsieh, H. H., and Wen, K. L. (2009), High Frequency Site Amplification Evaluated from Borehole Data in the Taipei Basin, Journal of Seismology, 13(4), 601-611.
- Huang, M. W., Wang, J. H., Ma, K. F., Wang, C. Y., Hung J. H., and Wen, K. L. (2007), Frequency-Dependent Sites Amplifications with f ≥ 0.01 Hz Evaluated from Velocity and Density Models in Central Taiwan, Bulletin of the Seismological Society of America, 97(2), 624-637.
- Holzer, T. L., Bennett, M. J., Noce, T. E., Padovani, A. C., Tinsley, III J. C. (2005), Shear-wave velocity of surficial geologic sediments: statistical distributions and depth dependence, Earthquake Spectra, 21(1), 161-177.
- Imai, T. (1977), P- and S-wave velocities of the ground in Japan, Proceedings of the 9th international conference on soil mechanics and foundation engineering, Tokyo, Japan, July 10-15, 2, 257-260.
- 19. Koppes, M. N. and Montgomery, D. R. (2009), The relative efficacy of fluvial and glacial erosion over modern to orogenic timescales, Nature Geoscience, 2, 644-647.
- 20. Kuo, C. H., Cheng, D. S., Hsieh, H. H., Chang, T. M., Chiang, H. J., Lin, C.

M., and Wen, K. L. (2009), Comparison of three different methods in investigating shallow shear-wave velocity structures in Ilan, Taiwan, Soil Dynamics and Earthquake Engineering, 29(1), 133-143.

- Kuo, C. H., Wen, K. L., Hsieh, H. H., Chang, T. M. Lin, C. M., and Chen, C. T. (2011), Evaluating empirical regression equations for Vs and estimating Vs30 in northeastern Taiwan, Soil Dynamics and Earthquake Engineering, 31(3), 431-439.
- 22. Lee, C. T., Cheng, C. T., Liao, C. W., and Tsai, Y. B. (2001), Site classification of Taiwan free-field strong-motion stations, Bulletin of the Seismological Society of America, 91(5), 1283-1297.
- 23. Lee, C. T. and Tsai, B. R. (2008), Mapping Vs30 in Taiwan, Terrestrial, Atmospheric and Oceanic Sciences, 19(6), 671-682.
- 24. Lee, S. H. H. (1992), Analysis of the multicollinearity of regression equations of shear wave velocities, Soils and Foundations, 32(1), 205-214.
- Liew, P. M., Pirazzoli, P. A., Hsieh, M. L., Arnold, M., Barusseau, J. P. Fontugne, M., and Giresse, P. (1993), Holocene Tectonic Uplift Deduced from Elevated Shorelines, Eastern Coastal Range of Taiwan, Tectonophysics, 222, 55-68.
- Lin, C. M., Chang, T. M., Huang, Y. C., Chiang, H. J., Kuo, C. H., and Wen, K. L. (2009), Shallow S-Wave Velocity Structures in the Western Coastal Plain of Taiwan, Terrestrial, Atmospheric and Oceanic Sciences, 20(2), 299-308.
- 27. Ohsaki, Y. and Iwasaki, R. (1973), On dynamic shear moduli and Poisson's ratio of soil deposits, Soils and Foundations, 13(4), 61-73.
- Ohta, Y. and Goto, N. (1978a), Shear wave velocity measurement during standard penetration test, Earthquake Engineering and Structure Dynamics, 6, 43-50.
- 29. Ohta, Y. and Goto, N. (1978b), Empirical shear wave velocity equations in terms of characteristic soil indexes, Earthquake Engineering and Structure Dynamics, 6, 167-187.

- Pavlenko, O. V. and Wen, K. L. (2008), Estimation of Nonlinear Soil Behavior During the 1999 Chi-Chi, Taiwan, Earthquake, Pure and Applied Geophysics, 165(2), 373-407.
- Phung, V., Atkinson, G. M., and Lau, D. T. (2006), Methodology for site classification estimation using strong ground motion data from the Chi-Chi, Taiwan, Earthquake, Earthquake Spectra, 22, 511-531.
- Pitilakis, K., Raptakis, D. Lontzetidis, K., Tika-vassilikou, T., and Jongmans, D. (1999), Geotechnical and geophysical description of Euro-seistests, using field and laboratory tests, and moderate strong ground motions, Journal of Earthquake Engineering, 3(3), 381-409.
- Power, M., Chiou B., Abrahamson N., Bozorgnia Y., Shantz T., and Roblee C. (2008), An Overview of the NGA Project, Earthquake Spectra, 24(1), 3-21.
- 34. Seed, H. B. and Idriss, I. M.(1981), Evaluation of liquefaction potential of sand deposits based on observations of performance in previous earthquakes, Proceedings of the conference on in situ testing to evaluate liquefaction susceptibility. ASCE, 81-544.
- 35. Sokolov, V. Y., Loh, C. H., and Jean, W. Y. (2007), Application of Horizontal-to-Vertical (H/V) Fourier Spectral Ratio for Analysis of Site Effect on Rock (NEHRP-class B) Sites in Taiwan, Soil Dynamics and Earthquake Engineering, 27(4), 314-323.
- 36. Sykora, D. E. and Stoloe, K. H. II (1983), Correlations of in situ measurements in sands of shear wave velocity, soil characteristics and site conditions, Report GR 83-33, Civil Engineering Department, University of Texas at Austin, 484 pp.
- Teng, L. S. (1996), Extension collapse of the northern Taiwan mountain belt, Geology, 24(10), 949-952.
- Wald, D. J. and Allen, T. I. (2007), Topographic slope as a proxy for seismic site conditions and amplication, Bulletin of the Seismological Society of America, 97(5), 1379-1395.

- 39. Wang, G. Q., Tang, G. Q., Boore, D. M. Burbach, V. N., Jackson, C. R., Zhou, X. Y., and Lin, Q. L. (2006), Surface Waves in the Western Taiwan Coastal Plain from an Aftershock of the 1999 Chi-Chi, Taiwan, Earthquake, Bulletin of the Seismological Society of America, 96(3), 821-845.
- Wen, K. L., Lin C. M., Chiang, H. J., Kuo, C. H., Huang, Y. C., and Pu, H. C. (2008), Effect of Surface Geology on Ground Motions: the Case of TAP056, Terrestrial, Atmospheric and Oceanic Sciences, 19(5), 451-462.
- 41. 地球物理資料管理系統網頁: <u>http://192.83.177.213/index.php</u>
- 42. 地震中心 20 年專刊 (2009), 中央氣象局。
- 43. 何春蓀(1997),台灣地質概論—台灣地質圖說明書,第二版,經濟部 中央地質調查所。
- 44. 強震測站工程地質資料庫(2011),國家地震工程研究中心, http://egdt.ncree.org.tw/。
- 45. 強震儀測站地質鑽探調查工程紀實報告書(2002-2010), 富國技術工程 股份有限公司。
- 46. 建築物耐震設計規範及解說部分規定修正規定(2011),行政院公報第17卷,第15期,共106頁。
- 47. 道路橋樑示方書同解說, V 耐震設計編 (1996), 日本道路協會。
- 48. 道路橋樑示方書同解說, V 耐震設計編 (2002), 日本道路協會。
- 49. 謝宏灝、溫國樑、郭俊翔(2011),全國強震測站場址工程地質資料庫現況,99年度國家地震工程研究中心研究成果報告,161-164。

附錄一 本研究所使用之統計外插法係數

本研究回歸分析所得之各區域統計外插法(STS)係數 a、b 與其決定 係數(R²),依深度由 10 至 29 公尺以 1 公尺間隔逐一列出,使用方式可參 考式(3.3): logVs30=a+blogVs(d)。

品	域	CHY	:

			1
<i>d</i>	а	b	R^2
10	0.2804	0.9165	0.9475
11	0.2699	0.9186	0.9534
12	0.2617	0.9199	0.9597
13	0.2505	0.9224	0.9656
14	0.2377	0.9259	0.9704
15	0.2232	0.9302	0.9742
16	0.2064	0.9356	0.9765
17	0.1882	0.9414	0.9788
18	0.1697	0.9475	0.9817
19	0.1488	0.9546	0.9846
20	0.1290	0.9612	0.9872
21	0.1102	0.9675	0.9899
22	0.0911	0.9738	0.9925
23	0.0726	0.9799	0.9947
24	0.0535	0.9862	0.9962
25	0.0354	0.9923	0.9974
26	0.0238	0.9957	0.9983
27	0.0135	0.9986	0.9990
28	0.0070	0.9999	0.9995
29	0.0030	1.0001	0.9999

E	ド	TIMA	٠
匝	现	пพА	•

d	а	b	R^2
10	0.3072	0.9122	0.8775
11	0.2909	0.9166	0.8894
12	0.2744	0.9211	0.9007
13	0.2660	0.9226	0.9080
14	0.2558	0.9249	0.9157
15	0.2477	0.9263	0.9223
16	0.2405	0.9273	0.9283
17	0.2229	0.9324	0.9361
18	0.2034	0.9382	0.9455
19	0.1823	0.9447	0.9545
20	0.1599	0.9516	0.9627
21	0.1363	0.9591	0.9703
22	0.1148	0.9658	0.9764
23	0.0926	0.9729	0.9819
24	0.0725	0.9792	0.9865
25	0.0580	0.9835	0.9908
26	0.0377	0.9900	0.9945
27	0.0196	0.9957	0.9971
28	0.0125	0.9973	0.9987
29	0.0050	0.9992	0.9997

區域 ILA:

d	а	b	R^2
10	-0.0665	1.0541	0.9367
11	-0.0713	1.0542	0.9445
12	-0.0679	1.0508	0.9507
13	-0.0626	1.0466	0.9562
14	-0.0631	1.0450	0.9615
15	-0.0657	1.0444	0.9680
16	-0.0696	1.0447	0.9740
17	-0.0625	1.0403	0.9784
18	-0.0496	1.0338	0.9819
19	-0.0415	1.0292	0.9850
20	-0.0369	1.0262	0.9878
21	-0.0292	1.0219	0.9902
22	-0.0221	1.0178	0.9922
23	-0.0146	1.0136	0.9936
24	-0.0076	1.0097	0.9952
25	-0.0020	1.0062	0.9964
26	-0.0002	1.0045	0.9974
27	-0.0016	1.0039	0.9983
28	-0.0056	1.0043	0.9991
29	-0.0067	1.0035	0.9995

四城 NAU ・

d	а	b	R^2
10	0.1620	0.9651	0.9089
11	0.1570	0.9649	0.9171
12	0.1421	0.9688	0.9253
13	0.1267	0.9729	0.9348
14	0.1144	0.9758	0.9438
15	0.1028	0.9786	0.9520
16	0.0892	0.9824	0.9608
17	0.0785	0.9852	0.9682
18	0.0662	0.9886	0.9744
19	0.0612	0.9892	0.9793
20	0.0539	0.9907	0.9832
21	0.0451	0.9928	0.9867
22	0.0334	0.9962	0.9899
23	0.0248	0.9984	0.9925
24	0.0195	0.9994	0.9947
25	0.0141	1.0004	0.9965
26	0.0101	1.0008	0.9977
27	0.0059	1.0013	0.9987
28	0.0036	1.0010	0.9994
29	0.0022	1.0003	0.9999

品	域	TAP	

d	а	b	R^2
10	0.1823	0.9817	0.8205
11	0.1367	0.9852	0.9045
12	0.1266	0.9869	0.9209
13	0.1236	0.9856	0.9337
14	0.1230	0.9835	0.9446
15	0.1171	0.9837	0.9533
16	0.1124	0.9835	0.9608
17	0.1061	0.9842	0.9672
18	0.1023	0.9836	0.9729
19	0.0975	0.9834	0.9780
20	0.0884	0.9849	0.9825
21	0.0790	0.9865	0.9865
22	0.0701	0.9879	0.9899
23	0.0609	0.9894	0.9925
24	0.0515	0.9911	0.9946
25	0.0430	0.9924	0.9963
26	0.0335	0.9943	0.9977
27	0.0218	0.9971	0.9987
28	0.0135	0.9985	0.9994
29	0.0072	0.9991	0.9999

品	域	TCU	:	
		1		

d	а	b	R^2
10	0.5347	0.8373	0.8109
11	0.3527	0.8957	0.8742
12	0.3192	0.9061	0.8895
13	0.2943	0.9135	0.9021
14	0.2676	0.9216	0.9133
15	0.2368	0.9315	0.9245
16	0.2086	0.9404	0.9354
17	0.1825	0.9487	0.9465
18	0.1607	0.9553	0.9555
19	0.1376	0.9625	0.9643
20	0.1170	0.9688	0.9717
21	0.0999	0.9737	0.9774
22	0.0895	0.9761	0.9820
23	0.0761	0.9798	0.9862
24	0.0589	0.9850	0.9902
25	0.0433	0.9897	0.9935
26	0.0321	0.9927	0.9960
27	0.0221	0.9952	0.9978
28	0.0142	0.9971	0.9990
29	0.0056	0.9991	0.9998

品	域	TTN	:	
		1		

		1.	D^2
<i>d</i>	a	b	K⁻
10	0.5660	0.8281	0.7033
11	0.5691	0.8245	0.7114
12	0.5585	0.8260	0.7232
13	0.5241	0.8362	0.7446
14	0.4571	0.8586	0.7765
15	0.3876	0.8820	0.8072
16	0.3390	0.8978	0.8382
17	0.2798	0.9177	0.8681
18	0.2203	0.9379	0.8936
19	0.1769	0.9521	0.9153
20	0.1441	0.9625	0.9340
21	0.1221	0.9691	0.9468
22	0.1093	0.9722	0.9581
23	0.0924	0.9767	0.9677
24	0.0742	0.9818	0.9761
25	0.0471	0.9904	0.9835
26	0.0398	0.9916	0.9893
27	0.0242	0.9957	0.9940
28	0.0129	0.9983	0.9973
29	0.0067	0.9991	0.9994

附錄二 EGDT 中已鑽探測站座標及場址相關資訊

此附錄共列出 439 個 EGDT 中已鑽探測站之資訊包括 TWD97 系統座標位置、三個不同研究(本研究、Chiou and Youngs (2008) 及 Lee and Tsai (2008))的 Vs30 數值、以及五個不同研究(本研究、Chiou and Youngs (2008)、Lee and Tsai (2008)、Lee et al. (2001)以及 Phung et al. (2006))的测站場址分類結果。本附錄中所列出的測站為 EGDT 中已鑽探並有波速測量資料的測站,故所列之其他相關研究的其他測站結果則不包括於此附錄中。

測站編號後面如有星號(*),則代表其波速剖面深度未達 30 公尺,故其後所列之本研究 Vs30 則是採用 BCV 法估算所得。本研究成果、Chiou and Youngs (2008)及 Lee et al. (2001)之場址分類皆採用 NEHRP 之分類準則; Lee and Tsai (2008)則將場址種類 C 和 D 更加細分為 C1 (360-490 m/s)、C2 (490-620 m/s)、C3 (620-760 m/s)及 D1 (180-240 m/s)、D2 (240-300 m/s)、D3 (300-360 m/s);而 Phung et al. (2006)則僅將場址分為土層 (Vs30≦360 m/s)及岩層 (Vs30>360 m/s)兩類。Chiou and Youngs (2008)之成果僅含 Vs30 而無提供場址分類結果,故其場 址分類結果為本研究自行依 NEHRP 準則分類以便於比較,而其 Vs30 數值若列於中括號之中,代表是由公式推算而 得,其他測站的 Vs30 則是也從 EGDT 波速剖面而得,與本研究之結果有小幅度之差異,是因為計算 Vs30 時假設各 地層片段之方式不同所導致,此差異量很小故在此不予討論。
			十四空	七田	Chiou	and	Lee a	nd Tsai	Lee et al.	Phung et al.
測站編碼	經度	緯度	个听九	成木	Youngs	(2008)	(20	008)	(2001)	(2006)
			Vs30	class	Vs30	class	Vs30	class	class	class
CHY001	120.2490	23.7047	229.88	D	-	-	211	D1	E	-
CHY002	120.4204	23.7176	229.62	D	253.13	D	221	D1	E	S
CHY003*	120.5386	23.7150	177.64	Е	-	-	227	D1	D	-
CHY004	120.1795	23.5997	272.98	D	271.30	D	239	D1	E	R
CHY005	120.4214	23.6101	211.03	D	-	-	217	D1	E	-
CHY006	120.5603	23.5803	422.68	С	438.19	С	494	C2	D	R
CHY007	120.1735	23.4714	202.05	D	-	-	-	-	-	-
CHY008*	120.2692	23.4853	209.50	D	210.73	D	234	D1	E	R
CHY009	120.4164	23.4728	226.11	D	-	-	248	D2	D	-
CHY012	120.1608	23.3307	192.22	D	198.40	D	200	D1	E	S
CHY013	120.2738	23.3562	216.23	D	-	-	228	D1	E	-
CHY014	120.5927	23.2946	341.80	D	[560]	С	514	C2	D	R
CHY015	120.4146	23.3529	224.73	D	228.66	D	223	D1	D	S
CHY016	120.1621	23.2192	199.47	D	200.86	D	199	D1	E	S
CHY017*	120.2769	23.2137	196.02	D	190.57	D	235	D1	E	S
CHY018	120.4001	23.2222	594.65	С	-	-	611	C2	С	-
CHY020	120.1582	23.0023	214.14	D	-	-	216	D1	Е	-
CHY021	120.2956	23.0789	212.34	D	-	-	201	D1	D	-
CHY022*	120.4697	23.0441	570.02	С	[486]	С	436	C1	С	R
CHY023	120.2881	22.9638	279.79	D	279.78	D	283	D2	D	S
CHY024	120.6149	23.7549	408.50	С	427.73	С	478	C1	D	S
CHY025	120.5225	23.7773	276.50	D	277.50	D	313	D3	E	S
CHY026	120.4195	23.7967	220.64	D	226.01	D	232	D1	Е	S

CHY027	120.2552	23.7501	209.50	D	210.01	D	222	D1	E	R
CHY028	120.6157	23.6305	546.91	С	542.61	С	560	C2	D	R
CHY029	120.5373	23.6114	541.66	С	544.74	С	522	C2	D	R
CHY030	120.4833	23.6429	207.88	D	204.71	D	233	D1	D	-
CHY031	120.3497	23.6570	215.67	D	-	-	219	D1	E	-
CHY032	120.3024	23.5780	192.57	D	192.71	D	202	D1	E	S
CHY033	120.2247	23.5388	193.32	D	197.63	D	210	D1	E	S
CHY034	120.5525	23.5208	383.14	С	378.75	С	424	C1	D	R
CHY036*	120.4884	23.6061	236.05	D	233.14	D	245	D2	D	S
CHY037	120.4293	23.5546	208.78	D	212.14	D	234	D1	D	-
CHY038*	120.4561	23.5339	372.88	С	-	-	383	C1	С	-
CHY039*	120.3518	23.5193	195.15	D	201.21	D	229	D1	E	S
CHY041	120.6047	23.4386	488.12	С	492.26	С	499	C2	D	R
CHY043	120.3370	23.4044	225.41	D	-	-	227	D1	E	-
CHY044	120.1720	23.3841	192.67	D	194.47	D	201	D1	E	S
CHY045	120.6666	23.3001	627.55	С	-	-	627	C3	В	-
CHY046	120.4714	23.4754	446.46	С	442.15	С	440	C1	С	R
CHY047*	120.4553	23.4938	183.52	D	[292]	D	333	D3	D	S
CHY048*	120.4452	23.4708	248.65	D	-	-	296	D2	D	-
CHY049	120.3663	23.3656	224.82	D	-	-	227	D1	E	-
CHY051	120.4671	23.2804	363.88	С	-	-	457	C1	D	-
CHY053	120.3638	23.2859	272.67	D	-	-	191	D1	D	-
CHY054*	120.3164	23.3065	175.11	Е	172.10	Е	179	Е	E	R
CHY055	120.2769	23.2687	221.45	D	225.77	D	222	D1	E	S
CHY056	120.1392	23.2616	189.00	D	193.00	D	198	D1	E	-
CHY058	120.3274	23.1710	271.13	D	[238]	D	245	D2	D	S
CHY059	120.1109	23.1825	186.97	D	191.09	D	185	D1	E	S
CHY060*	120.2461	23.1240	223.92	D	228.92	D	233	D1	E	S

CHY062	120.4591	23.1217	597.85	С	602.63	С	533	C2	D	R
CHY063	120.3491	23.0251	287.66	D	246.88	D	307	D3	D	R
CHY065	120.3517	22.9043	222.69	D	[344]	D	226	D1	D	S
CHY066	120.2172	22.9188	211.49	D	211.97	D	228	D1	E	S
CHY067	120.1924	22.9975	229.04	D	227.97	D	230	D1	E	S
CHY068*	120.2097	22.9860	196.05	D	-	-	253	D2	D	-
CHY069	120.1899	22.9725	219.98	D	[201]	D	237	D1	E	S
CHY070	120.2365	22.9632	228.67	D	[283]	D	244	D2	D	S
CHY071	120.1729	23.0630	200.52	D	[201]	D	221	D1	E	S
CHY073*	120.4326	23.4961	201.48	D	-	-	248	D2	D	-
CHY074	120.8134	23.5083	524.61	С	553.43	С	760	В	-	R
CHY076*	120.2298	23.6364	170.89	Е	169.84	E	169	Е	E	S
CHY077*	120.2018	23.1735	124.90	Е	-	-	131	Е	E	-
CHY078*	120.2367	23.0380	162.25	E	160.67	E	230	D1	D	S
CHY080*	120.6773	23.5973	499.17	С	[680]	С	760	В	-	R
CHY082	120.3077	23.7230	194.81	D	193.69	D	214	D1	Е	R
CHY083	120.5850	23.7215	374.02	С	-	-	354	D3	D	-
CHY084	120.4640	23.7269	259.07	D	-	-	252	D2	E	-
CHY087	120.5305	23.3817	508.00	С	505.20	С	527	C2	С	R
CHY089	120.3647	23.0756	396.20	С	-	-	401	C1	С	-
CHY090	120.2234	23.2660	181.88	D	[201]	D	-	-	-	S
CHY092	120.4863	23.7889	252.21	D	253.72	D	244	D2	E	S
CHY093	120.1552	23.6513	191.39	D	190.49	D	206	D1	E	R
CHY094	120.3307	23.6923	223.20	D	221.92	D	225	D1	E	S
CHY095	120.3306	23.4560	216.36	D	-	-	223	D1	E	-
CHY099*	120.2882	23.1361	217.12	D	228.84	D	247	D2	D	S
CHY101	120.5704	23.6845	252.37	D	258.89	D	252	D2	D	S
CHY102*	120.6223	23.2437	836.12	В	[680]	С	584	C2	В	R

CHY103	120.5390	23.6996	223.66	D	-	-	245	D2	D	-
CHY104	120.4734	23.6679	218.80	D	223.24	D	223	D1	E	S
CHY105	120.3453	23.5545	204.36	D	-	-	206	D1	E	-
CHY106	120.4147	23.4363	227.63	D	-	-	245	D2	D	-
CHY107*	120.2992	23.2977	181.05	D	175.68	Е	195	D1	E	R
CHY108	120.2543	23.1860	249.68	D	-	-	210	D1	E	-
CHY111	120.2335	23.7896	269.64	D	276.34	D	247	D2	E	-
CHY112	120.1913	23.7017	239.71	D	239.77	D	228	D1	E	-
CHY113	120.2140	23.4200	240.64	D	-	-	-	-	-	-
CHY114	120.1269	23.0368	215.08	D	[229]	D	219	D1	E	-
CHY116	120.1168	23.0768	194.34	D	[201]	D	205	D1	E	S
CHY123	120.2395	23.4834	212.45	D	-	-	226	D1	-	-
HWA001	121.5628	23.7878	565.18	С	-	-	466	C1	D	-
HWA002	121.5201	23.5982	789.37	В	[419]	С	426	C1	С	R
HWA003	121.5205	23.6020	1538.03	А	1525.85	А	424	C1	D	S
HWA004	121.2483	23.1727	319.59	D	-	-	326	D3	С	-
HWA006	121.4251	23.6710	557.05	С	[491]	С	382	C1	D	R
HWA008	121.6031	23.9869	297.03	D	-	-	549	C2	D	-
HWA010	121.6032	23.9784	249.68	D	-	-	554	C2	D	-
HWA011	121.5948	23.9953	360.84	С	[242]	D	544	C2	D	S
HWA012	121.6319	23.9906	409.78	С	[279]	D	541	C2	D	S
HWA013	121.5984	23.9756	336.76	D	[231]	D	557	C2	D	S
HWA015	121.5626	23.9730	445.60	С	[335]	D	555	C2	D	S
HWA016	121.5685	23.9632	579.60	С	[344]	D	563	C2	D	S
HWA017	121.5474	23.9472	584.68	С	[446]	С	556	C2	D	S
HWA018	121.5324	23.9048	462.57	С	-	-	527	C2	D	-
HWA019	121.6135	23.9752	503.52	С	[244]	D	554	C2	D	R
HWA020	121.4415	23.8118	629.59	С	[502]	С	440	C1	D	R

HWA025	121.6523	24.1618	483.09	С	[426]	С	760	В	D	R
HWA026	121.6245	24.1181	460.94	С	457.49	С	455	C1	В	S
HWA027	121.5986	24.0537	434.56	С	[283]	D	502	C2	D	S
HWA028	121.6093	24.0144	404.91	С	[242]	D	529	C2	D	S
HWA029	121.5790	23.9356	597.13	С	614.05	С	587	C2	D	S
HWA030	121.4567	23.7839	594.06	С	[487]	С	430	C1	D	S
HWA031	121.5003	23.7641	593.82	С	[473]	С	431	C1	D	S
HWA033	121.4826	23.6846	392.75	С	395.57	С	388	C1	С	R
HWA034	121.3837	23.5879	381.78	С	379.18	С	372	C1	D	R
HWA035	121.4446	23.7300	686.11	С	[501]	С	402	C1	С	R
HWA036	121.3743	23.4977	520.61	С	[481]	С	567	C2	D	S
HWA037	121.3928	23.4522	466.53	С	[477]	С	598	C2	D	R
HWA038	121.3518	23.4589	661.52	С	642.73	С	663	C3	С	R
HWA040	121.3169	23.3358	438.60	С	-	-	433	C1	D	-
HWA041	121.3030	23.2650	481.85	С	[501]	С	389	C1	D	S
HWA043	121.5475	23.7079	544.46	С	[229]	D	427	C1	D	R
HWA044	121.5360	23.6516	533.05	С	[419]	С	417	C1	D	R
HWA045	121.7489	24.3075	472.78	С	[259]	D	509	C2	D	S
HWA046	121.6291	24.1479	643.71	С	617.52	С	645	C3	В	R
HWA047	121.6541	24.1251	543.68	С	-	-	466	C1	D	-
HWA048	121.5802	24.0089	349.79	D	[279]	D	533	C2	D	R
HWA049	121.5645	23.9932	509.34	С	[390]	С	542	C2	D	S
HWA051	121.5567	23.8685	449.74	С	[358]	D	513	C2	D	R
HWA052	121.4731	23.8194	576.48	С	-	-	450	C1	D	-
HWA053	121.3205	23.4057	829.07	В	-	-	638	C3	В	R
HWA056	121.5164	24.1777	516.44	С	511.30	С	760	В	В	R
HWA058	121.4928	23.9656	525.67	С	[564]	С	760	В	-	R
HWA059*	121.5073	23.8707	209.72	D	[422]	С	481	C1	-	S

HWA062	121.6198	23.9797	605.69	С	-	-	550	C2	-	-
ILA001	121.8430	24.8808	939.12	В	[418]	С	764	В	D	R
ILA002	121.8054	24.8433	220.68	D	[229]	D	265	D2	D	S
ILA003	121.7899	24.7958	265.55	D	263.82	D	239	D1	E	S
ILA004	121.7901	24.7435	121.45	Е	124.27	Е	172	Е	E	S
ILA005	121.8119	24.6968	237.21	D	239.33	D	241	D2	D	S
ILA006	121.8327	24.6396	276.37	D	279.41	D	263	D2	D	S
ILA008	121.7708	24.7072	290.70	D	[230]	D	226	D1	E	S
ILA012	121.7419	24.7789	255.48	D	[238]	D	219	D1	D	S
ILA013*	121.7376	24.7332	194.50	D	[201]	D	232	D1	D	S
ILA014*	121.7271	24.6927	307.46	D	300.77	D	324	D3	D	S
ILA015	121.6993	24.7793	776.80	В	[522]	С	760	В	В	S
ILA016	121.6912	24.7478	269.71	D	271.10	D	276	D2	D	S
ILA017	121.6883	24.7204	627.42	С	-	-	306	D3	D	-
ILA018	121.6883	24.6795	497.47	С	-	-	348	D3	D	-
ILA020	121.6356	24.7538	453.55	С	-	-	603	C2	D	-
ILA026	121.7729	24.6734	237.50	D	-	-	228	D1	D	-
ILA027*	121.7668	24.6890	212.68	D	[201]	D	268	D2	D	S
ILA028	121.7547	24.7538	218.38	D	221.10	D	214	D1	D	-
ILA029	121.7545	24.7707	186.97	D	-	-	207	D1	D	-
ILA030	121.7641	24.7260	198.51	D	200.98	D	201	D1	E	S
ILA031	121.8406	24.5970	657.39	С	649.25	С	288	D2	В	R
ILA032	121.8358	24.6215	296.52	D	295.48	D	294	D2	D	S
ILA033	121.8278	24.8625	253.57	D	-	-	275	D2	D	-
ILA034	121.8140	24.8020	217.67	D	-	-	247	D2	E	-
ILA035	121.7681	24.8218	293.10	D	[242]	D	250	D2	D	S
ILA036	121.7597	24.7870	179.02	E	[229]	D	219	D1	D	S
ILA037	121.7223	24.7438	212.93	D	210.17	D	214	D1	D	S

ILA038	121.7435	24.7194	243.85	D	-	-	221	D1	D	-
ILA039	121.7292	24.7632	222.81	D	227.18	D	218	D1	D	S
ILA040	121.7990	24.7723	188.35	D	-	-	216	D1	E	-
ILA041	121.7999	24.7221	194.18	D	196.88	D	173	Е	E	S
ILA042	121.7986	24.6875	213.18	D	209.36	D	228	D1	E	S
ILA044*	121.7636	24.6545	159.00	Е	158.13	Е	197	D1	D	S
ILA046*	121.7425	24.6650	397.59	С	396.93	С	345	D3	D	S
ILA048	121.7612	24.7663	192.12	D	199.59	D	209	D1	E	S
ILA049*	121.7561	24.7636	187.12	D	[201]	D	217	D1	D	S
ILA050	121.7490	24.4259	626.57	С	[497]	С	760	В	В	R
ILA051	121.6829	24.7181	535.24	С	[503]	С	384	C1	В	S
ILA053	121.7392	24.3289	534.66	С	-	-	512	C2	D	-
ILA054*	121.9260	24.9705	783.09	В	[425]	С	760	В	В	S
ILA055	121.8168	24.7359	265.96	D	266.77	D	245	D2	E	S
ILA056	121.8143	24.7591	221.29	D	223.71	D	228	D1	E	S
ILA059	121.8294	24.6655	232.24	D	236.84	D	242	D2	E	R
ILA061	121.8326	24.5219	502.05	С	[242]	D	310	D3	D	S
ILA063	121.5303	24.6090	1002.67	В	996.51	В	760	В	В	R
ILA066	121.7783	24.4453	477.63	С	[306]	D	328	D3	D	S
KAU003	120.2636	22.6309	887.71	В	913.77	В	190	D1	D	S
KAU004	120.3515	22.6309	221.89	D	-	-	273	D2	D	-
KAU005	120.3494	22.6167	253.46	D	-	-	270	D2	D	-
KAU006	120.3255	22.5896	218.97	D	218.49	D	198	D1	E	S
KAU008	120.3743	22.6285	287.45	D	285.94	D	293	D2	D	S
KAU009	120.2644	22.8676	270.54	D	-	-	229	D1	D	-
KAU011*	120.2643	22.7602	145.35	E	155.32	E	150	E	Е	S
KAU012	120.3793	22.8779	304.66	D	[422]	С	335	D3	D	S
KAU013	120.3653	22.7946	261.60	D	-	-	303	D3	D	-

KAU014	120.3496	22.7011	243.09	D	-	-	246	D2	E	-
KAU015	120.3414	22.6543	227.14	D	[320]	D	254	D2	D	S
KAU017	120.3934	22.5070	252.58	D	284.78	D	255	D2	E	-
KAU020	120.5431	22.8998	344.21	D	373.33	С	309	D3	E	S
KAU023*	120.4959	22.6768	218.24	D	-	-	316	D3	D	-
KAU024	120.4802	22.6634	220.60	D	-	-	296	D2	E	-
KAU026	120.5070	22.6978	275.15	D	-	-	321	D3	D	-
KAU028	120.5990	22.8261	547.80	С	-	-	403	C1	D	-
KAU029	120.5761	22.7540	351.91	D	-	-	351	D3	D	-
KAU030	120.5660	22.6104	265.21	D	[201]	D	326	D3	E	S
KAU031	120.4880	22.5826	219.55	D	-	-	322	D3	E	-
KAU032	120.4610	22.5438	190.70	D	[201]	D	338	D3	E	S
KAU033	120.4618	22.4625	186.55	D	[201]	D	190	D1	E	S
KAU034	120.6278	22.5283	999.17	В	-	-	760	В	В	S
KAU035	120.5401	22.5471	281.99	D	309.72	D	251	D2	D	-
KAU036	120.5518	22.4711	234.59	D	[238]	D	209	D1	Е	-
KAU037	120.6515	22.2612	277.30	D	283.21	D	304	D3	E	S
KAU038	120.6926	22.1901	660.36	С	[523]	С	382	C1	В	S
KAU039	120.7483	22.0955	459.45	С	464.82	С	484	C1	D	S
KAU041*	120.8746	22.1109	986.52	В	-	-	715	C3	D	-
KAU042*	120.8377	22.0203	815.55	В	-	-	715	C3	D	S
KAU044	120.5115	22.4367	215.93	D	221.24	D	212	D1	E	S
KAU045	120.3158	22.5663	145.22	Ε	150.18	E	148	E	E	-
KAU046	120.7460	22.0037	198.41	D	204.23	D	245	D2	D	S
KAU048*	120.4986	22.7238	139.53	Ε	[297]	D	339	D3	D	S
KAU051	120.6282	22.3703	1019.54	В	[457]	С	775	В	В	S
KAU054	120.7206	23.2766	502.77	С	[577]	С	510	C2	С	R
KAU059	120.3148	22.7260	229.55	D	-	-	175	E	E	-

KAU060	120.3184	22.6709	246.01	D	-	-	255	D2	E	-
KAU061*	120.2998	22.6387	214.35	D	-	-	239	D1	Е	-
KAU062	120.2923	22.6218	195.58	D	[201]	D	224	D1	E	S
KAU063	120.1813	22.9033	211.60	D	[201]	D	224	D1	E	S
KAU064	120.2477	22.7842	242.46	D	[201]	D	161	Е	E	S
KAU065	120.3115	22.7521	244.86	D	-	-	173	Е	E	-
KAU066	120.3456	22.7301	228.62	D	[201]	D	229	D1	E	S
KAU067	120.4238	22.6553	463.64	С	-	-	267	D2	D	-
KAU068*	120.5443	22.9760	813.23	В	-	-	760	В	D	-
KAU069	120.6646	22.8857	512.65	С	[556]	С	760	В	В	R
KAU070	120.4951	22.7809	289.39	D	-	-	357	D3	D	-
KAU071	120.5218	22.6474	238.71	D	-	-	338	D3	E	-
KAU072	120.6014	22.6670	487.13	С	-	-	503	C2	D	-
KAU074	120.5723	22.5727	224.89	D	[201]	D	299	D2	E	S
KAU075	120.5062	22.4882	196.82	D	[201]	D	200	D1	E	S
KAU076	120.5649	22.4263	280.18	D	-	-	229	D1	D	-
KAU078	120.6462	22.7069	553.05	С	[532]	С	576	C2	В	R
KAU079	120.6325	22.5912	593.77	С	-	-	760	В	В	-
KAU080	120.7118	22.0562	399.33	С	-	-	381	C1	D	-
KAU085	120.3290	22.8840	255.81	D	260.75	D	256	D2	D	S
KAU087	120.3188	22.6119	247.40	D	276.11	D	243	D2	E	S
KAU088	120.3187	22.6440	228.70	D	[201]	D	252	D2	E	S
KAU089	120.4112	22.4788	191.45	D	189.91	D	195	D1	E	-
KAU090	120.4161	22.5908	226.47	D	-	-	347	D3	D	-
TAP001	121.5138	25.0377	160.09	Е	[201]	D	196	D1	E	-
TAP002	121.4669	25.1257	373.95	С	-	-	514	C2	D	-
TAP003	121.4572	25.0857	209.37	D	212.39	D	218	D1	E	S
TAP004	121.4826	25.1053	195.53	D	-	-	170	Е	Е	-

TAP005	121.5140	25.1064	176.97	Е	[201]	D	110	E	E	S
TAP006	121.5156	25.0948	198.37	D	184.77	D	188	D1	E	S
TAP007	121.5161	25.0743	204.32	D	-	-	167	E	E	S
TAP008	121.5362	25.0735	191.56	D	[201]	D	177	E	E	S
TAP009	121.5811	25.0794	187.59	D	-	-	232	D1	E	-
TAP010	121.4782	25.0657	217.53	D	226.38	D	221	D1	E	S
TAP011	121.4959	25.0559	211.08	D	-	-	194	D1	D	-
TAP012	121.5167	25.0542	207.37	D	[201]	D	227	D1	E	S
TAP013	121.5343	25.0556	207.93	D	[201]	D	221	D1	E	S
TAP014	121.5522	25.0564	192.14	D	[201]	D	176	E	E	S
TAP015	121.5794	25.0507	208.08	D	-	-	166	E	E	-
TAP016*	121.4317	25.0613	326.64	D	-	-	686	C3	E	-
TAP017	121.4558	25.0515	221.38	D	[201]	D	178	E	E	S
TAP019	121.4964	25.0357	225.23	D	-	-	237	D1	E	-
TAP020	121.5348	25.0369	224.18	D	-	-	178	E	E	S
TAP021	121.5518	25.0360	165.31	Е	[201]	D	175	E	E	S
TAP022	121.5630	25.0310	181.01	D	-	-	213	D1	D	-
TAP024	121.4744	25.0185	187.84	D	-	-	229	D1	D	S
TAP025	121.4984	25.0232	250.18	D	-	-	257	D2	E	-
TAP026	121.5116	25.0150	200.58	D	[201]	D	274	D2	E	S
TAP027	121.5007	24.9997	195.65	D	-	-	252	D2	D	-
TAP031	121.5489	25.0202	222.00	D	-	-	323	D3	D	-
TAP032	121.4821	24.9989	314.86	D	[418]	С	437	C1	D	S
TAP033	121.5378	24.9780	486.34	С	[247]	D	491	C2	D	-
TAP035	121.5463	24.9224	404.69	С	[438]	С	760	В	С	R
TAP037	121.4415	25.0344	219.88	D	-	-	143	E	D	-
TAP038	121.4187	25.0218	209.03	D	-	-	312	D3	D	-
TAP039	121.3694	24.9350	661.59	С	-	-	580	C2	D	-

TAP040*	121.4418	25.1737	432.53	С	[301]	D	560	C2	С	-
TAP041	121.4251	25.1814	360.53	С	[229]	D	553	C2	D	S
TAP043	121.4181	24.9898	382.63	С	[240]	D	615	C2	D	S
TAP044	121.4025	24.9750	473.00	С	-	-	648	C3	D	-
TAP045*	121.8230	25.1095	987.65	В	-	-	760	В	В	-
TAP046*	121.7771	25.1024	822.03	В	[426]	С	744	C3	С	S
TAP047	121.3460	24.9517	571.21	С	[400]	С	565	C2	D	S
TAP050*	121.4029	25.1495	280.65	D	[418]	С	531	C2	D	-
TAP051	121.4506	25.0997	401.82	С	403.17	С	604	C2	В	R
TAP052	121.3904	25.0801	434.40	С	[559]	С	515	C2	С	R
TAP054	121.4418	24.9975	309.74	D	-	-	250	D2	D	-
TAP056	121.5445	25.1621	590.09	С	-	-	760	В	-	-
TAP057*	121.6943	25.0800	366.57	С	-	-	428	C1	D	-
TAP058*	121.7216	25.1249	1056.71	В	-	-	760	В	В	-
TAP059*	121.6937	25.1559	450.55	С	[552]	С	769	В	В	R
TAP065	121.7731	25.1493	1034.66	В	1023.45	В	760	В	-	S
TAP066	121.5292	25.1827	657.97	С	-	-	760	В	С	S
TAP067	121.5921	24.9778	815.00	В	[597]	С	760	В	-	R
TAP071	121.6168	25.0017	831.37	В	-	-	835	В	D	-
TAP075*	121.7366	25.0111	851.06	В	[595]	С	760	В	В	S
TAP077	121.8516	25.0624	992.39	В	1022.77	В	760	В	D	S
TAP080	121.9491	25.0168	401.77	С	-	-	803	В	D	-
TAP084	121.6369	25.2240	204.08	D	224.22	D	266	D2	D	S
TAP085	121.7122	24.9383	895.12	В	-	-	760	В	В	-
TAP086	121.5755	24.9505	942.80	В	[511]	С	760	В	С	S
TAP088	121.5858	25.0373	227.98	D	[552]	С	760	В	D	-
TAP089	121.5677	25.0250	442.12	С	440.21	С	741	C3	D	-
TAP090	121.6030	25.0559	324.61	D	324.38	D	315	D3	Е	S

TAP091	121.5904	25.0602	177.30	E	[233]	D	333	D3	E	-
TAP093	121.5659	25.0844	193.58	D	-	-	585	C2	Е	-
TAP094*	121.4837	25.1402	409.86	С	[263]	D	760	В	D	S
TAP095	121.4996	25.1339	205.92	D	[201]	D	269	D2	E	S
TAP096	121.5049	25.1185	161.04	Е	-	-	414	C1	E	-
TAP103	121.7806	25.0717	444.94	С	-	-	760	В	В	S
TAP105	121.9228	25.0383	1267.43	В	-	-	757	C3	-	-
TAP113	121.6918	24.9821	612.81	С	-	-	760	В	-	-
TCU001	121.1014	24.9736	570.23	С	-	-	513	C2	С	-
TCU002	121.0832	25.0353	502.13	С	-	-	443	C1	С	-
TCU003	121.1433	25.0454	507.23	С	517.33	С	443	C1	D	S
TCU004	121.2016	25.0610	518.81	С	-	-	549	C2	С	-
TCU005*	121.2444	25.1033	491.24	С	497.22	С	565	C2	D	-
TCU006	121.1490	24.9108	612.06	С	[533]	С	490	C1	D	R
TCU009	121.2283	24.9628	465.98	С	-	-	525	C2	D	S
TCU011	121.2865	24.8834	811.14	В	-	-	592	C2	D	S
TCU012*	121.2992	24.9361	644.75	С	-	-	540	C2	D	-
TCU014*	121.3151	25.0444	523.24	С	[481]	С	596	C2	D	S
TCU015	120.9459	24.7558	430.63	С	426.00	С	448	C1	С	R
TCU016	120.9655	24.8145	485.48	С	-	-	458	C1	D	-
TCU017	121.0183	24.7785	548.25	С	558.76	С	548	C2	-	S
TCU019	120.9879	24.9011	505.99	С	-	-	504	C2	С	-
TCU020	120.9953	24.8408	489.00	С	-	-	491	C2	D	-
TCU021	121.1741	24.7919	446.43	С	-	-	595	C2	D	-
TCU022	120.9900	24.7674	436.65	С	-	-	415	C1	D	-
TCU023*	121.1402	24.7202	555.20	С	-	-	505	C2	С	-
TCU024	121.0881	24.7358	383.22	С	-	-	442	C1	С	-
TCU026	121.0836	24.7732	606.49	С	[488]	С	600	C2	D	S

TCU027	121.0746	24.8302	670.39	С	-	-	571	C2	D	-
TCU028	121.0534	24.7002	524.93	С	-	-	518	C2	D	-
TCU029*	120.7576	24.5578	404.83	С	[426]	С	480	C1	С	S
TCU030	120.8852	24.5862	624.67	С	-	-	487	C1	D	-
TCU031	120.7097	24.5594	476.30	С	489.22	С	499	C2	D	S
TCU032	120.8223	24.5211	500.25	С	[454]	С	502	C2	D	-
TCU033	120.8703	24.6836	420.55	С	423.40	С	469	C1	D	S
TCU034	120.8652	24.6382	391.57	С	393.77	С	392	C1	С	R
TCU035	120.7971	24.6141	378.12	С	383.62	С	376	C1	D	-
TCU036*	120.7051	24.4466	483.13	С	[495]	С	600	C2	D	S
TCU037	120.6835	24.4913	463.46	С	-	-	514	C2	D	-
TCU039	120.7915	24.4903	549.55	С	540.66	С	551	C2	С	S
TCU040	120.6546	24.4482	336.19	D	362.03	С	604	C2	E	S
TCU042*	120.8148	24.5536	573.50	С	[424]	С	487	C1	D	R
TCU043*	120.9597	24.6866	539.96	С	-	-	469	C1	С	-
TCU044	120.7652	24.4018	508.35	С	[668]	С	576	C2	D	-
TCU045	120.9206	24.5400	706.96	С	704.64	С	371	C1	С	R
TCU046	120.8612	24.4661	462.61	С	465.55	С	760	В	В	R
TCU047	120.9462	24.6176	522.97	С	520.37	С	489	C1	С	R
TCU048	120.5971	24.1781	558.36	С	551.21	С	413	C1	С	S
TCU049	120.6996	24.1773	469.74	С	487.27	С	467	C1	D	R
TCU050	120.6414	24.1799	539.33	С	[471]	С	522	C2	D	S
TCU052	120.7481	24.1965	589.22	С	579.10	С	568	C2	D	S
TCU053	120.6776	24.1922	452.11	С	454.55	С	446	C1	D	R
TCU054	120.6842	24.1592	437.00	С	460.69	С	487	C1	D	S
TCU056	120.6334	24.1571	401.19	С	[440]	С	420	C1	D	S
TCU059	120.5719	24.2670	232.19	D	[230]	D	473	C1	D	S
TCU060	120.6504	24.2220	613.31	С	[496]	С	471	C1	D	S

TCU061	120.5568	24.1346	365.30	С	[320]	D	368	C1	D	S
TCU062	120.6840	24.1150	451.03	С	-	-	495	C2	С	-
TCU063	120.6238	24.1080	476.15	С	476.14	С	447	C1	D	S
TCU064	120.6192	24.3447	646.97	С	[358]	D	487	C1	D	S
TCU065	120.6998	24.0563	290.11	D	305.85	D	314	D3	D	R
TCU066	120.7042	24.2138	582.69	С	-	-	507	C2	D	-
TCU067	120.7282	24.0900	440.30	С	433.63	С	454	C1	D	R
TCU068	120.7736	24.2756	490.00	С	487.34	С	568	C2	D	S
TCU069	120.8305	24.2585	554.73	С	-	-	582	C2	D	-
TCU070	120.5475	24.1965	396.48	С	401.26	С	352	D3	С	S
TCU071	120.7951	23.9841	614.75	С	624.85	С	760	В	С	R
TCU072	120.8579	24.0392	471.88	С	468.14	С	761	В	D	R
TCU074	120.9711	23.9613	558.24	С	549.43	С	563	C2	D	R
TCU075	120.6876	23.9825	521.24	С	573.02	С	507	C2	D	S
TCU076	120.6836	23.9065	573.23	С	614.98	С	502	C2	D	R
TCU077	120.7874	23.8273	507.49	С	-	-	494	C2	D	-
TCU078	120.8552	23.8101	444.54	С	443.04	С	450	C1	D	R
TCU079	120.9022	23.8370	353.94	D	363.99	С	760	В	D	R
TCU081	121.0142	24.8281	427.14	С	-	-	474	C1	D	S
TCU082	120.6840	24.1456	469.37	С	472.81	С	488	C1	D	R
TCU083	121.1944	24.9673	370.71	С	[513]	С	382	C1	-	S
TCU085	121.3666	24.6738	1037.88	В	999.66	В	760	В	В	S
TCU086	120.2891	23.8615	222.90	D	222.22	D	229	D1	E	-
TCU090	120.6568	23.6456	550.86	С	-	-	579	C2	С	-
TCU094	121.0571	24.7679	581.45	С	589.85	С	578	C2	С	S
TCU095	121.0200	24.6894	454.10	С	446.63	С	464	C1	С	R
TCU096	120.9660	24.7923	456.90	С	[421]	С	455	C1	D	S
TCU102	120.7286	24.2470	706.21	С	714.27	С	573	C2	D	S

TCU103	120.7150	24.3073	488.68	С	494.10	С	511	C2	D	S
TCU104	120.6090	24.2445	403.47	С	[544]	С	406	C1	С	S
TCU105	120.5677	24.2376	539.13	С	575.54	С	504	C2	С	S
TCU106	120.5569	24.0816	450.96	С	[419]	С	458	C1	D	S
TCU110	120.5799	23.9605	199.47	D	212.72	D	228	D1	E	S
TCU111	120.4948	24.1121	233.47	D	237.53	D	234	D1	E	S
TCU112	120.4303	24.0553	191.27	D	[201]	D	194	D1	Е	S
TCU113	120.3955	23.8916	231.09	D	230.30	D	239	D1	Е	S
TCU114	120.5226	23.8777	264.64	D	-	-	251	D2	Е	-
TCU115	120.4778	23.9581	184.93	D	215.34	D	190	D1	Е	S
TCU116	120.5883	23.8551	463.25	С	493.09	С	356	D3	E	S
TCU117	120.4684	24.1321	207.17	D	198.58	D	239	D1	E	S
TCU118	120.4314	24.0004	228.55	D	[201]	D	235	D1	E	S
TCU120	120.6215	23.9775	458.16	С	459.34	С	438	C1	С	S
TCU121	120.4590	23.8946	232.42	D	-	-	238	D1	E	-
TCU127	121.0086	24.6294	807.65	В	-	-	447	C1	D	-
TCU128	120.7688	24.4144	591.95	С	599.64	С	588	C2	С	S
TCU129	120.6925	23.8766	506.46	С	664.43	С	510	C2	D	R
TCU131	120.8257	24.5650	491.44	С	[374]	С	484	C1	D	-
TCU135	120.6533	24.3331	619.77	С	-	-	494	C2	С	-
TCU136	120.6587	24.2583	458.02	С	[538]	С	490	C1	С	S
TCU138	120.6029	23.9205	604.23	С	652.85	С	400	C1	D	R
TCU139	120.5483	23.9210	306.95	D	303.96	D	274	D2	E	-
TCU140	120.3676	23.9565	221.93	D	[201]	D	235	D1	E	S
TCU141	120.4712	23.8322	221.22	D	[209]	D	237	D1	E	S
TCU143	120.7634	23.8799	465.91	С	-	-	536	C2	D	-
TCU147	121.2554	24.8574	538.12	С	537.92	С	546	C2	-	S
TCU148	120.9342	23.9545	513.52	С	-	-	560	C2	-	-

TCU153	121.0111	24.8282	504.49	С	-	-	495	C2	-	-
TTN001	121.4511	23.3163	484.46	С	[424]	С	474	C1	D	S
TTN002	121.3048	22.9716	663.94	С	[427]	С	519	C2	D	R
TTN003	121.0063	22.6153	508.47	С	[263]	D	704	C3	D	S
TTN011	121.1194	22.7816	445.37	С	-	-	670	C3	D	-
TTN014*	121.3728	23.0978	539.62	С	[316]	D	427	C1	D	S
TTN015	121.1547	22.7522	491.66	С	[232]	D	665	C3	D	S
TTN016	120.9036	22.3558	842.82	В	-	-	760	В	В	S
TTN023	121.1649	23.0505	542.20	С	527.54	С	520	C2	D	S
TTN025	121.0809	22.9023	701.10	С	704.96	С	669	C3	С	R
TTN028	121.0630	22.7767	619.83	С	[507]	С	760	В	С	R
TTN030	121.0259	22.6978	688.94	С	-	-	760	В	С	-
TTN031	121.4680	23.3554	512.69	С	[353]	D	498	C2	D	R
TTN032	121.4141	23.2445	736.11	С	[424]	С	427	C1	D	S
TTN033	121.3957	23.1918	660.21	С	[229]	D	410	C1	D	S
TTN034	121.2487	22.8952	457.49	С	-	-	587	C2	D	-
TTN037	120.9673	22.5331	738.19	С	-	-	716	C3	С	-
TTN040	121.2073	23.1493	726.57	С	728.01	С	760	В	В	R
TTN041	121.1252	23.1324	431.59	С	418.24	С	760	В	В	R
TTN042	121.2851	22.9988	824.52	В	845.34	В	504	C2	D	S
TTN043	121.3309	23.0266	490.60	С	-	-	474	C1	D	-
TTN045	121.1559	22.9737	539.47	С	[503]	С	582	C2	D	S
TTN046	121.2409	22.9625	529.10	С	[543]	С	549	C2	С	R
TTN053	120.8568	22.3814	627.81	С	-	-	760	В	-	-